
I UNIT 4 THE CONTROL UNIT

I
- - -- - -- -

Structure Page No.

Introduction
Objectives
The Control Unit
The Hardwired Control
Wilkes Control
The Micro-Programmed Control
The Micro-Instructions
4.6.1 Types of Micro-Instructions
4.6.2 Control Memory Organisation
4.6.3 Micro-Instruction Formats
The Execution of Micro-Program
Summary
Solutions1 Answers

4.0 INTRODUCTION

By now we have discussed instruction sets and register organisation followed by a
discussion on micro-operations and a simple arithmetic logic unit circuit. We have
also discussed the floating point ALU and arithmetic processors, which are
commonly used for floating point computations.

In this unit we are going to discuss the functions of a control unit, its structure
followed by the hardwired type of control unit. We will discuss the micro-
programmed control unit, which are quite popular in modem computers because of
flexibility in designing. We will start the discussion with several definitions about the
unit followed by Wilkes control unit. Finally, we will discuss the concepts involved
in micro-instruction execution.

4.1 OBJECTIVES

After going through this unit you will be able to:
. -

define what is a control unit and its function;
describe a simple control unit organization;
define a hardwired control unit;
define the micro-programmed control unit; ,

define the term micro-instruction; and
identify types and formats of micro-instruction.

4.2 THE CONTROL UNIT

The two basic components of a CPU are the control unit and the arithmetic and logic
unit. The control unit of the CPU selects and interprets program instructions and then
sees that they are executed. The basic responsibilities of the control unit are to

The Central
Processing Unit making ALU to perform a particular operation on the data

regulating other internal operations.

But how does a control unit control the above operations? What are the functional
requirements of the control unit? What is its structure? Let us explore answers of
these questions in the next sections.

Functional Requirements of a Control Unit

Let us first try to define the functions which a control unit must perform in order to
get things to happen. But in order to define the functions of a control unit, one must
know what resources and means it has at its disposal. A control unit must know about
the:

(a) Basic components of the CPU

(b) Micro-operation this CPU performs.

The CPU of a computer consists of the following basic functional components:

The Arithmetic Logic Unit (ALU), which performs the basic arithmetic and
logical operations.

Registers which are used for information storage within the CPU.

Internal Data Paths: These paths are useful for moving the data between two
registers or between a register and ALU.

External Data Paths: The roles of these data paths are normally to link theVCPU
registers with the memory or UO interfaces. This role is normally fulfilled by the
system bus.

The Control Unit: This causes all the operations to happen in the CPU.

The micro-operations performed by the CPU can be classified as:

Micro-operations for data transfer from register-register, register-memory, U 0 -
register etc.

Micro- operations for performing arithmetic, logic and shift operations. These
micro-operations involve use of registers for input and output.

The basic responsibility of the control unit lies in the fact that the control unit must be
able to guide the various components of CPU to perform a specific sequence of
micro-operations to achieve the execution of an instruction.
\

What are the functions, which a control unit performs to make an instruction
execution feasible? The instruction execution is achieved by executing micro-
operations in a specific sequence. For dizcrent instructions this sequence may be
different. Thus the control unit must perform two basic functions:

Cause the execution of a micro-operation.

Enable t:-, CPU +o execute a proper sequence of micro-operations, which is
dpt: ..~ned by the instruction to be executed.

B11+ how are these two tasks achieved? The control unit generates control signals,
which in turn are responsible for achieving the above two tasks. But, how are these
control signals generated? We will answer this question in later sections. First let us
discuss a simple structure of control unit.

Structure of Control Unit

A control unit has a set of input values on the basis of which it produces an output
conrrol signal, which in turn performs micro-operations. These output signals control
the execution of a program. A general model of control unit is shown in Figure 1.

F within CPU
t b

1 Flag values : a Received fmm
I system bus

b Co~ltml Unit

Clock b
sendto 3
system bus

Control
bus

Figure 1: A General Model ofControl Unlt

In the model given above the control unit is a black box, which has certain inputs and
outputs.

The inputs to the control unit are:

The Master Clock Signal: This signal causes micro-operations to be performed
in a square. In a single clock cycle either a single or a set of simultaneous micro-
operations can be performed. The time taken in performing a single micro-
operation is also termed as processor cycle time or the clock cycle time in some
machines.

The Instruction Register: It contains the operation code (opcode) and
addressing mode bits of the instruction. It helps in determining the various cycles
to be performed and hence determines the related micro-operations, which are
needed to be performed.

Flags: Flags are used by the control unit for determining the status of the CPU &
the outcomes of a previous ALU operation. For example, a zero flag if set
conveys to control unit that for instruction ISZ (skip the next instruction if zero

i flag is set) the next instruction is to be skipped. For such a case control unit
cause increment of PC by program instruction length, thus skipping next
instruction.

a Control Signals from Control Bus: Some of the control signals are provided to
the control unit through the control bus. These signals are issued from outside
the CPU. Some of these signals are interrupt signals and acknowledgement
signals.

On the basis of the input signals the control unit activates certain output control
signals, which in turn are responsible for the execution of an instruction. These output

) control signals are: .

a Control signals, which are required within the CPU: These control signals

The Control Unit

The Central
Processing Unit Control signals to control bus: These control signals transfer data from or to

CPU register to or from memory or I/O interface. These control signals are
issued on the control bus to activate a data path on the data 1 address bus etc.

Now, let us discuss the requirements from such a unit. A prime requirement for
control unit is that it must h o w how all the instructions will be executed. It should
also know about the nature of the results and the indication of possible errors. All
this is achieved with the help of flags, op-codes, clock and some control signals to
itself.

A control unit contains a clock portion that provides clock-pulses. This clock signal is
used for measuring the timing of the micro-operations. In general, the timing signals
from control unit are kept sufficiently long to accommodate the proportional delays of
signals within the CPU along various data paths. Since within the same instruction
cycle different control signals are generated at different times for performing different
micro-operations, therefore a counter can be utilised with the clock to keep the count.
However, at the end of each instruction cycle the counter should be reset to the initial
condition. Thus, the clock to the control unit must provide counted timing signals.
Examples, of the functionality of control units along with timing diagrams are given
in further readings.

How are these control signals applied to achieve the particular operation? The
control signals are applied directly as the binaly inputs to the logic gates of the logic
circuits. All these inputs are the control signals, which are applied to select a circuit
(for example, select or enable input) or a path (for example, multiplexers) or any
other operation in the logic circuits.

A program execution consists of a sequence of instruction cycles. Each instruction'"
cycle is made up of a number of sub cycles. One such simple subdivision includes
fetch, indirect, execute, and interrupt cycles, with only fetch and execute cycles
always occurring. Each sub cycle involves one or more micro-operations.

Let us revisit the micro-operations described in Unit 2 to discuss how the events of
3r.r instruction cycle can be described as a sequence of such micro-operations.

L Fetch Cycle

The begnning of each instruction cycle is the fetch cycle, and causes an instruction to
be.fetched fiom memory.

The fetch cycle consists of four micro-operations that are executed in three timing
steps. The fetch cycle can be written as: ,

T,: M A R C PC
Tz : MBR t [MAR]

PC t P C + I
T3 : IR t MBR

where I is the instruction length. We assume that a clock is available for timing
purposes and that it pmits regularly spaced clock pulses. Each clock pulse defines a
time unit. Thus, all the uruts are of equal duration. Each micro-operation can be
performa6 *ithin the time of a single time unit. The notation (TI, T2, T3) represents
successive time units. What is done in these time units?

In the first time unit the content of PC is moved to MAR. ,

In the second time unit the contents of memory location specified by MAR is
moved to MBR and the contents of the PC is incremented by I.

In the third time unit tne content of MBR is moved lo IR. The Control Unit

l'he Indirect Cycle

Once an instruction is fetched, the next step is to fetch the operands. Considering the
same example ds of Unit 2, the instruction may have direct and indirect addressing
modes. An indirect address is handled using indirect cycle. The following micro-
operations are required in the indirect cycle:

. TI : MAR f IR (address)
TZ : kIBR f [MAR]
T3 : Il< (address) f MBR (address)

l'he MAR is loaded with the address field of IR register. Then the memory is read to
fetch the address of operand, which is transferred to the address field of IR through
PIABR as data is received in MBR during the read operation.

l'hus, the IR now is in the same state as of direct address, viz., as if indirect
addressing had not been used. IR is now ready for the execute cycle.

The Execute Cycle , o

. l'he fetch and ~ndirect cycles involve a small, fixed sequence of micro-operations.
Each of these cycles has fixed sequence of micro-operations that are common to all
instructions.

'This is not true: of the execute cycle. For a machine with N different opcodes, there
2 re N different sequences of micro-operations that can occur. Let us consider some
l~ypothetical ir structions:

add instruction that adds the contents of memory location X to Register R1 with
111 storing the result:

ADD R1, X

'The sequence of micro-operations may be:

TI : MAR f IR (address)

i T?: MBR t [MAR] .

t
, i t the beginning of the execute cycle IR contains the ADD instruction and its direct
operand address (memory location X). At time TI , the address portion of the IR is
lransferred to ?he MAR. At T2 the referenced memory location is read into MBR
]:inally, at T3 the contents of R1 and MBR are added by the ALU.

I

! Let us discuss one more instruction:
I 'iSZ X, it increments the content of memory location X by 1. If the result is 0, the next

:.nstruction in the sequence is skipped. A possible sequence of micro-operations for
~b i s instructioii may be:

T, : MAR f IR(address)

'r2 : MBR f [MAR]

'r3 : MBR f MBR+ 1

'r4 : [MAR] f MBR

The Central
Processing Unit If (MBR = 0) then (PC t PC+ I)

Please note that for this machine we have assumed that MBR can be incremented by
ALU directly.

The PC is incremented if MBR contains 0. This test and action can be implemented as
one micro-operation. Note also that this micro-operation can be performed during the
same time unit during which the updated value in MBR is stored back to memory.
Such instructions are usehl in implementing looping.

'The Interrupt Cycle

On completion of the execute cycle the current instruction execution gets completed.
At this point a test is made to determine whether any enabled interrupts have
occurred. If so, the interrupt cycle is performed. This cycle does not execute an
interrupt but causes start of execution of Interrupt Service Program (ISR). Please note
that ISR is executed as just another program instruction cycle. The nature of this
cycle varies greatly from one machine to another. A typical sequence of micro-
operations of the interrupt cycle are:

TI: M B R t P C

T2 : MAR t Save-Address

PC t ISR- Address

T3 : [MAR] t MBR

At time TI, the contents of the PC are transferred to the MBR, so that they can be
saved for return lkom the interrupt. At time T2 the MAR is loaded with the address at
which the contents of the PC are to be saved, and PC is loaded with the address of the
start of the interrupt-servicing routine. At time T3 MBR, which contains the old value
of the PC, is stored in the memory. The processor is now ready to begin the next
instruction cycle.

The Instruction Cycle

The instruction cycle for this given machine consists of four cycles. Assume a 2-bit
instruction cycle code (ICC). The ICC can represent the state of the processor in
terms of cycle. For example, we can use:

00 : Fetch

01 : Indirect

10 : Execute

11 : Interrupt

At the end of each of the four cycles, the ICC is set appropriately. Please note that r

indirect cycle is always followed by the execute cycle and the interrupt cycle is
always followed by the fetch cycle. For both the execute and fetch cycles, the next
cycle depends on the state of the system. Let us show an instruction execution using
timing diagram and instruction cycles:

The Control Unit

CLK
Signal

%-%

Dl,%

RD

WR

~enkry read &tPt n d -4
I !

3
Assumptiom: 10 bit address bus, 16 bit data bus, size of insmaion 16bits - with 10 bit &dress, 6 bit opcode

Figure 2: Timing Diagram for ISZ instruction

Please note that the address line determine the location of memory. Read/ write signal
controls whether the data is being input or output. For example, at time T2 in M2 the
read control signal becomes active, A9 - A, input contains MAR that value is kept
enabled on address bits and the data lines are enabled to accept data from RAM, thus
enabling a typical RAM data output on the data bus.

For reading no data input is applied by CPU but it is put on data bus by memory after
the read coiltrol signal to memory is activated. Write operation is activated along with
data buS carrying the output value.

This diagram is used for illustration of timing and control. However, more
information on these topics can be obtained from further readings.

4.3 THE HARDWIRED CONTROL

With the last section we have discussed the control unit in terms of its inputs, output
and functions. A variety of techniques have been used to organize a control unit. Most
of them fall into two major categories:

L. Hardwired control organization
2. Microprogrammed control organization.

In the hardwired organization, the control unit is designed as a combinational circuit.
-That is, the control unit is implemented by gates, flip-flops, decoder and other digital
circuits. Hardwired control units can be optimised for fast operations.

The Central
Processing Unit The block diagram of control unit is shown in Figure 3. The major inputs to the

circuit are instruction register, the clock, and the flags. The control unit uses the
opcode of instruction stored in the IR register to perform different actions for
different instructions. The control unit logic has a unique logic input for each opcode
This simplifies the control logic. This control line selection can be performed by a
decoder. A decoder will have n binary inputs and 2" binary outputs. Each of these 2"
different input patterns will activate a single unique output line.

The clock portion of the control unit issues a repetitive sequence of pulses for the SS
duration of micro-operation(s). These timing signals control the sequence of
execution of instruction and determine what control signal needs to applied at what
time for instruction execution. '

Clock

1 lrlstnrctior~ register I

Decoder m
4 \

I I Ir~tnlctlon I
1, 1, selectroll 11.

hnes

0 flags
C0lItrol ulul

sequerrlng
fmm

logrc CPIJ

Control signals at Time T
2

Figure 3: Block Diagram of Control Unit Operation

Check Your Progress 1 1
i

1. What are the inputs to control unit?
..

...
2. How does a control unit control the instruction cycle?

..
3. What is a hardwired control unit?

.. I

4.4 WILKES CONTROL
I

Prof. M. V. Wilkes of the Cambridge University Mathematical Laboratory coined the
tc rm microprogramming in 195 1. He provided a systeqatic alternative procedure for

designing the control unit of a digital computer. During instruction executing a
machine instruction, a sequence of transformations and transfer of information from
one register in the processor to another take place. These were also called the micro
operations. Because of the analogy between the execution of individual steps in a
machine instruction to the execution of the individual instruction in a program,
Wilkes introduced the concept of microprogramming. The Wilkes control unit
replaces the sequential and combinational circuits of hardwired control unit by a
simple control unit in conjunction with a storage unit that stores the sequence of steps
of instruction that is a micro-program.

In Wilkes microinstruction has two major components:

a) Control field which indicates the control lines which are to be activated and
b) Address field, which provides the address of the next microinstruction to be

executed.

The figure 4 below is an example of Wilkes control unit design.

Clock
signal

liming
sequel=
through
Clock

Register I k-J I
Address of the next
micro-ulstniction

Address
decoder

- . ,
Cantml signals

Figure 4: Wilkes Control Unit

The control memory in Wilkes control is organized, as a PLA's like matrix made of
diodes. This is partial matrix and consists of two components, the control signals and
the address of the next micro-instruction. The register I contains the address of the
next micro-instruction that is one step of instruction execution, for example TI in MI
or T2 in M2 etc. as in Figure 2. On decoding the control signals are generated that
cause execution of micro-operation@) of that step. In addition, the control unit
indicates the address of the next micro-operation which gets loaded through register I1
to register I. Register I can also be loaded by register I1 and "enable IR input" control
signal. Thrs will pass the address of first micro-instruction of execute cycle. During a
machine cycle one row of the matrix is activated. The first part of the row generates
the control signals that control the operatioils of the processor. The second part
generates the address of the row to be selected in the next machine cycle.

The Control Lnit 1

At the beginning of the cycle, the address of the row to be selected is contained in
register I. This address is the input to the decoder, which is activated by a clock pulse.

Tile Central
Processing Unit

This activates the row of the control matrix. The two-register arrangement is needed,
as the decoder is a combinational circuit; with only one register, the output would
become the input during a cycle. This may be an unstable condition due to repetitive
loop.

4.5 THE MICRO-PROGRAMMED CONTROL

An alternative to a hardwired control unit is a micro-programmed control unit, in
which the logic of the control unit is specified by a micro-program. A micro-program
is also called firmware (midway between the hardware and the software). It consists
of:

(a) One or more micro-operations to be executed; and
(b) The information about the micro-instruction to be executed next.

The general configuration of a micro-programmed control unit is demonstrated in
Figure 5 below:

l~~stnlction register
r 1

conirol sippals cai be:
within CPU or to system bus

Figure 5: Operation of Micro-Programmed Control Unit

The micro-i:;atructions are stored in the control memory. The address register for the
control memory contains the address of the next instruction that is to be read. The
control memory Buffer Register receives the micro-instruction that has been read. 4
micro-instruction execution primarily involves the generation of desired control
signals and signals used to determine the next micro-instruction to be executed. The
sequencing logic section loads the control memory address register. It also issues a
read command to control memory. The following functions are performed by the
micro-programmed control unit:

I 1. The sequence logic unit specifies the address of the control memory word that is
1 to be read, in the Address Register of the Control Memory. It also issues the

I READ signal.
i 2 . The desired control memory word is read into control memory Buffer Register.
I 3. The content of the control memory buffer register is decoded to create control

signals and next-address information for the sequencing logic unit.
4. The sequencing logic unit finds the address of the next control word on the basis

of the next-address information from the decoder and the ALU flags.

P ku we have discussed earlier, the execute cycle steps of micro-operations are
different for all instructions in addition the addressing mode may be different. All

1 such information generally is dependent on the opcode of the instruction Register
1 ([R). Thus, IR input to Address Register for Control Memory is desirable. Thus, there

exist a decoder from IR to Address Register for control memory. (Refer Figure 5).
This decoder translates the opcode of the IR into a control memory address.

Check Your Progress 2

I . What is firmware? How is it different from software?

1 ..

2 . State True or False

1 (a) A micro-instruction can initiate only one micro-operation at a time. ITIF(
(b) A control word is equal to a memory word.

(c) Micro-programmed control is faster than hardwired control.

(d) Wilkes control does not provide a branching micro-instruction.

3 . What will be the control signals and address of the next micro-instruction in the
Wilkes control example of Figure 4, if the entry address for a machine
instruction selects the last but one (branching control line) and the conditional
bit value for branch is true?

..

4.6 THE MICRO-INSTRUCTIONS

A micro-instruction, as defined earlier, is an instruction of a micro-program. It
specifies one or more micro-operations, which can be executed simultaneously. On
executing a micro-instruction a set of control signals are generated which in turn
cause the desired micro-operation to happen.

4.6.1 Types of Micro-instructions

In general the micro-instruction can be categorised into two general types. These are
branching and non-branching. After execution of a non-branching micro-instruction
the next micro-instruction is the one following the current micro-instruction.

However, the sequences of micro-instructions are relatively small and last only for 3
or 4 micro-instructions.

The Control Unit

The Central
Processing Unit

A conditional branching micro-instruction tests conditional variable or a flag
generated by an ALU operation. Normally, the branch address is contained in the
micro-instruction itself.

4.6.2 Control Memory Organization

The next important questio~ about the micro-instruction is: how are they organized in
the control memory? One of the simplest ways to organize control memory is to
arrange micro-instructions for various sub cycles of the machine instruction in the
memory. The Figure 6 shows such an organisation.

Fetch cycle

Indimt cycle

lntcmpt cycle

Execute cycle

4

Figure 6: Control Memory Organisation

Let us give an example of control memory organization. Let us t e e a machine
instruction: Branch on zero. This instruction causes a branch to a specified main
memory address in case the result of the last ALU operation is zero, that is, the zero
flag is set. The pseudocode of the micro-program for this instruction can be;

Test "zero flag" If SET branch to label ZERO

Unconditional brancb to label NON-ZERO

ZERO: (Microcode which causes replacement of program counter with the address
provided in the instruction)

Branch to interrupt or fetch cycle.

NON -ZEP.O: (Microcode which may set flags if desired indicating the branch has
not tanen place).

Branch to interrupt or fetch cycle. (For Next- Instruction Cycle)

I 4.6.3 Micro-instruction Formats I

Now let us fc~cus on the "ormat of a micro-instruction. The two widely used formats
used for micro-instructi 1s are horizontal and vertical. In the horizontal micro-
instruction each bit oft: micro-instruction represents a control signal, which directly
controls a single bus line or sometimes a gate in the machine. However, the length of
such a micro..instruction may be hundreds of bits. A typical horizontal micro-
instruction with its related fields is shown in Figure 7(a).

Inl~v~dual wnml Ihv~dua l wmml
s~g,mI for ~ntemal signal for system
CF'U ~011trOl A mrrninenarlinn RILC cnntml

' 1
I- +

lump conditions
(unconditional. zcm,

oveflow, indi.m)

(a) Horizontal Micro-instruction

F i i~r t i o~ l codes

1
cm&mction branch address

2 3 t i o m

@) Vertical Micro-instructions

Individual
co~~trnl A micminstruotion
signal

The Control h i t

(c) A Realistic Micro-instructions
Figure 7: Micro- instruction Formats

The Central
Processing Unit In a vertical micro-instruction many similar control signals can be encoded into a few

micro-instruction bits. For example, for 16 ALU operations, which may require 16
individual control bits in horizontal micro-instruction, only 4 encoded bits are needed
in vertical micro-instruction. Similarly, in a vertical micro-instruction only 3 bits are
needed to select one of the eight registers. However, these encoded bits need to be
passed from the respective decoders to get the individual control signals. This is
shown in figure 7(b).

In general, a horizontal control unit is faster, yet requires wider instruction words,
whereas vertical control units, although; require a decoder, are shorter in length. Most
of the systems use neither purely horizontal nor purely vertical micro-instructions
figure 7(c).

4.7 THE EXECUTION OF MICRO-PROGRAM

The micro-instruction cycle can consist of two basic cycles: the fetch and the execute.
Here, in the fetch cycle the address of the micro-instruction is generated and this
micro-instruction is put in a register used for the address of a micro-instruction for
execution. The execution of a micro-instruction simply means generation of control
signals. These control signals may drive the CPU (internal control signals) or the
system bus. The format of micro-instruction and its contents determine the
complexity of a logic module, which executes a micro-instruction.

One of the key features incorporated in a micro-iristruction is the encoding of micro-
instructions. What is encoding of micro-instruction? For answering this question let
us recall the Wilkes control unit. In Wilkes control unit, each bit of information &(her
generates a control signal or form a bit of next instruction address. Now, let us
assume that a machine needs N total number of control signals. If we follow the
Wilkes scheme we require N bits, one for each control signal in the control unit.

Since we are dealing with binary control signals, therefore, a 'N' bit micro-instruction
can represent 2N combinations of control signals.

The question is do we need all these 2N combinations?

No, some of these 2N combinations are not used because:

1. Two sources may be connected by respective control signals to a single
destination; however, only one of these sources can be used at a time. Thus, the
combinations where both these control signals are active for the same
destination are redundant.

2. A register cannot act as a source and a destination at the same time. Thus, such
a combination of control signals is redundant.

3. We can provide only one pattern of control signals at a time to ALU, making
some of the combinations redundant.

4. We can provide only one pattern of control signals at a time to the external
control bus also.

Therefore, we do not need 2N combinations. Suppose, we only need 2K (which is less
than 2N) combinations, then ;ve need only K encoded bits instead of N control signals.
The K bit micro-instruction is an extreme encoded micro-instruction. Let us touch
upon the characteristics of the extreme encoded and unencoded micro-instructions:

Unencoded micro-instructions

One bit is needed for each control signal; therefore, the number of bits required
in a micro-instruction is high.
It presents a detailed hardware view, as control signal need can bbdetermined.

Since each of the control signals can be controlled individually, therefore these
micro-instructions are difficult to program. However, concurrency can be

I exploited easily.
Almost no control logic is needed to decode the instruction as there is one to

I one mapping of control signals to a bit of micro-instruction. Thus, execution of
micro-instruction and hence the micro-program is faster.
The unencoded micro-instruction aims at optimising the performance of a
machine.

t Highly Encoded micro-instructions .

i The encoded bits needed in micro-instructions are small.
1 It provided an aggregated view that is a higher view of the CPU as only an

encoded sequence can be used for micro-programming.
The encoding helps in reduction in programming burden; however, the
concurrency may not be exploited to the fullest.
Complex control logic is needed, as decoding is a must. Thus, the execution of
a micro-instruction can have propagation delay through gates. Therefore, the
execution of micro-program takes a longer time than that of an unencoded
micro-instruction.

(1 The highly encoded micro-instructions are aimed at optimizing programming
effort.

In most of the cases, the design is kept between the two extremes. The LSI 11 (highly
encoded) and IBM 3033 (unencoded) control units are close examples of these two
i~pproaches.

lExecution/decoding of slightly encoded micro-instructions

.[n general, the micro-programmed control unit designs are neither completely
unencoded nor highly encoded. They are slightly coded. This reduces the width of
 control memory and micro-programming efforts. The basic technique for encoding is
shown in Figure 8. The micro-instruction is organised as a set of fields. Each field
zontains a code, which, upon decoding, activates one or more control signals. The
execution of a micro-instruction means that every field is decoded and generates
control signals. Thus, with N fields, N simultaneous actions can be specified. Each '

action results in the activation of one or more control signals. Generally each control
signal is activated by no more than one field. The design of an encoded micro-
instauction format can be stated in simple terms:

Organize the format into independent fields. That is, each field depicts a set of
actions such that actions fiom different fields can occur simultaneously.
Define each field such that the alternative actions that can be specified by the
field are mutually exclusive. That is, only one of the actions specified for a
given field could occur at a time.

Another aspect of encoding is whether it is direct or indirect (Figure 8). With indirect
encoding, one field is used to determine the interpretation of another field.

Another aspect of micro-instruction execution is the micro-instruction sequencing
that involves address calculation of the next micro-instruction. In general, the next
micro- instruction can be (refer Figure 6):

Next micro-instruction in sequence
Calculated on the basis of opcode

' Branch address (conditional or unconditional).

The Control Unit

The Central
Processing Unit A detailed discussion on these topics is beyond this unit. You musf refer to further

readings for more detailed information on Micro-programmed Control Unit Design.

. . (Field I Field 1 Field I . .
Decoding I Y : ~ I 1 D~$F 1 1 Logic I

.
1 v /

Contml Signals

Figure (a): Direct Encoding

... Field Field Field ...
Decoding

f f C f E
J

con1101 Signals

b lgure (0): Indirect Encoding
FiEgiife E-Mrcro-instruction Encoding

Check Your Progress 3
4

1 . State True or False 4

a) A branch micro-instruction can have only an unconditional jump.

b) Control store stores opcode-based micro-programs.

c) A true horizontal micro-instruction requires one bit for every control
signal.

d) A decoder is needed to find a branch address in the vertical micro-
instruction. •

e) One of the responsibilities of sequencing logic (Refer Figure 5) is to cause
reading of micro-instruction addressed by a micro-program counter into
the micro-instruction buffer. •

f) Status bits supplied from ALU to sequencing logic have no role to play a with the sequencing of micro-instruction.

2. What art the oossibilities for the next instruction address?

3. How many address fields are there in Wilkes Control Unit?

4. Compare and contrast unencoded and highly encoded micro-instructions.

1 4#.8 SUMMARY

In this unit we have discussed the organization of control units. Hardwired, Wilkes
and micro-programmed control units are also discussed. The key to such control units
are micro-instruction, which can be briefly (that is types and formats) described in
this unit. The function of a micro-programmed unit, that is, micro-programmed
execution, has also been discussed. The control unit is the key for the optimised
performance of a computer. The information given in this unit can be further
appended by going through further readings.

4.9 SOLUTIONS/ ANSWERS
- -- - - - - - -- -

Check Your Progress 1

1. IR, Timing Signal, Flags Register
2.: The control unit issues control signals that cause execution of micro-operations

in a pre-determined sequence. This, enables execution sequence of an
instruction.

21. A logic circuit based implementation of control unit.

Check Your Progress 2

I . Firmware is basically micro-programs, which are.used in a micro-programmed
control unit. Firmwares are more difficult to write than software.

! (a) False (b) False (C) False (d) False

. In sequence from left to right as per figure.
1 10..OO (control signals indicate more values)
110..OO (address of next, micro-instruction is found after assuming that
bottom line after condition code represent true in the Figure 4)

Check Your Progress 3

I. (a) False (b) False (c) True (d) False (e) True (f) False.

:I The address of the next micro-instruction can be one of the following:

the address of the next micro-instruction in sequence.
determined by opcode using mapping or any other method. '

branch address supplied on the internal address bus.

3. Wilkes control typically has one address field. However, for a conditional
branching micro-instruction, it contains two addresses. The Wilkes control, in

The Control Unit

