
UNIT 1 INSTRUCTION SET
ARCHITECTURE

St~wcture Page N9.

Introduction
Objectives
Instruction Set Characteristics
Instruction Set Design Considerations
1.3.1 Operand Data Types
1.3.2 Types of Instructions
1.3.3 Number of Addresses in an Instruction
Addressing Schemes
1.4.1 Immediate ~ddressin~
1.4.2 Direct Addressing
1.4.3 Indirect Addressing
1.4.4 Register Addressing
1.4.5 Register Indirect Addressing
1.4.6 Indexed Addressing Scheme
1.4.7 Base Register Addressing
1.4.8 Relative Addressing Scheme
1.4.9 Stack Addressing
Instruction Set and Format Design Issues
1.5.1 Instruction Length
1.5.2 A!location of Bits Among Opcode and Operand
1.5.3 2 Variable Length of Instructions
Example of Instruction Format
Summary
Solutions! Answers

1 .O INTRODUCTION

The Instruction Set Architecture (ISA) is the part of the processor that is visible to the
pt ogramrner or compiler designer. They are the parts of a processor design that need
to be understood in order to write assembly language, such as the machine language

i instructions and registers. Parts of the architecture that are left to the implementation
ate not part of ISA. The ISA serves as the boundary between software and hardware.

The term instruction will be used in this unit more often. What is an instruction?
What are its components? What are different types of instructions? What are the
various addressing schemes and their importance? This unit is an attempt to answer
these questions. In addition, the unit also discusses the design issues relating to
ir~struction format. We have presented here the instruction set of MIPS
(~ulicroprocessor without Interlocked Pipeline Stages) processor (very briefly) as an
e rample.

Clther related microprocessors instruction set can be studied from fiuther readings. We
will also discuss about the complete instruction set of 8086 micro-processor in unit 1,
Eilock 4 of this course.

1.1 OBJECTIVES -
/

After going through this unit you should be able to:

describe the characteristics of instruction set;
ious elements of an instruction;

differentiate various types of operands;

i 5

I

The Central
Processing Unit distinguish various types of instructions and various operations performed by the

instructions;
identify different types of ISAs on the basis of addresses in instruction sets;
identify various addressing schemes; and
discuss the instruction format design issues.

1.2 INSTRUCTION SET CHARACTERISTICS '

The key role of the Central Processing Unit (CPU) is to perform the calculations, to
issue the commands, to coordinate all other hardware components, and executing
programs including operating system, application programs etc. on your computer.
But CPU is primarily the core hardware component; you must speak to it in the core
binary machine language. The words of a machine language are known as
instructions, and its syntax is known as an instruction set.

The Instruction Set Viewpoints

Instruction set is the boundary where the computer designer arid the computer
programmer see the same computer from different viewpoints. From the designer's
point of view, the computer instruction set provides a functional description of a
processor, that is: 1
(i) A detailed list of the instructions that a processor is capable of processing.
(ii) A description of the types1 locations/ access methods for operands. -*

The common goal of computer designers is to build the hardware for implementing
the machine's instructions for CPU. From the programmer's point of view, the user
must understand machine or assembly language for low-level programming.
Moreover, the user must be aware of the register set, instruction types and the function
that each instruction performs.

This unit covers both the viewpoints. However, our prime focus is the programmer's
viewpoint with the design of instruction set. Now, let us define the instructions, parts
of instruction and so on.

What is an Instruction Set? a
Instruction set is the collection of machine language instructions that a particular
processor understands and executes. In other words, a set of assembly language
mnemonics represents the machine code of a particular computer. Therefore, if we
define all the instructions of a computer, we can say we have defined the instruction
set. It should be noted here that the instructions available in a computer are machine
dependent, that is, a different processors have different instruction sets. However, a
newergrocessor that may belong to some family may have a compatible but extended
instruction set of an old processor of that family. Instructions can take different
formats. The instruction format involves: .

the type;
length and position of operation codes in an instruction; and
the number and length of operand adds,ee.ses etc.

An interesting question for instruction format may be to have uniform length or
van able length instructions.

What are the elements of an instruction?

As the purpose of instruction is to communicate to CPU what to do, it requires a
mirdmum set of communication as:

What operation to perform?
On what operands?

Thils, each instruction consists of several fields. The most common fields found in
instruction formats are:

Optcode: (What operation to perform?)

An operation code field termed as opcode that specifies the operation to be
performed.

Operands: (Where are the operands?)

An address field of operand on which data processing is to be performed.
An operand cap reside in the memory or a processor register or can be
incorporated within the operand field of instruction as an immediate constant.
Therefore a mode field is needed that specifies the way the operand or its address
is to be determined.

A sample instruction format is given in figure 1.

1 Opcode (Addressing Mode I Operand or address of operand I
I L I I I - Instruction Length- - b

Figure 1: A Hypothetical Instruction Format of 32 bits

/ Please note the following points in Figure I:
t
1 The opcode size is 6 bits. So, in general it will have 26 = 32 operations.

(However, when you will study more architectures fiom further readings, you
will find even through these bits using special combinations. Instruction set

i designers have developed much more operations),
I a There is only one operand address machine. What is the significance of this? You
t

I
will find an answer of this question in section 1.3.3 of this unit.
There are two bits for addressing modes. Therefore, there are 22 = 4 different
addressing modes possible for this machine.

a The last ield (8 - 3 1 bits = 24 bits) here is the operand or the address of operand
field.

111 case of immediate operand the maximum size of the unsigned operand would be
224.

In case it is an address of operand in memory, then the maximum *hysi+l memory
size supported by this machine is 224 = 16 MB. \

Instruction Set
Architecture

The Central For this machine there may be two more possible addressing modes in addition to the
Processing Unit

immediate and direct. However, let us not discuss addressing modes right now. They
will be discussed in general, details in section 1.4 of this unit.

The opcode field of an instruction is a group of bits that define various processor
operations such as LOAD, STORE, ADD, and SHIFT to be performed on some data
stored in registers or memory. r

The operand address field can be data, or can refer to data - that is address of data, or
can be labels, which may be the address of an instruction you want to execute next,
such labels are commonly used in Subroutine call instructions. An operand address
can be:

The memory address .
CPU register address
I/0 device address

The mode field of an instruction specifies a variety of alternatives for referring to
operands using the given address. Please note that if the operands are placed in
processor registers then an instruction executes faster than that of operands
placed in memory, as the registers are very high-speed memory used by the CPU.
However, to put the value of a memory operand to a register you will require a
register LOAD instruction.

How is an instruction represented?

Instruction is represented as a sequence of bits. A layout of an instruction is termed as
instruction fomat. Instruction formats are primarily machine dependent. A CPU
instruction set can use many instruction formats at a time. Even the length of opcode
varies in the same processor. However, we will not discuss such details in this block.
You can refer to further readings for such details. 1
How many instructions in a Computer? 1
A computer can have a large number of instructions and addressing modes. The older
computers with the growth of Integrated circuit technology have a very large and
complex set of instructions. These are called "complex instruction set computers"
(CISC). Examples of CISC architectures are the Digital Equipment Corporation VAX
computer and the IBM 370 computer.

However, later it was found in the studies of program style that many complex
instructions found CISC are not used by the program. This lead to the idea of making
a simple but faster computer, which could execute simple instructions much faster.
These computers have simple instructions, registers addressing and move registers.
These are called Reduced Instruction Set Computers (RISC). We will study more
about RISC in Unit 5 of this Block.

Check Your Progress 1

State True or False.

1. An instruction set is a collection of all the instructions a CPU can execute.

2. Instructions can take different formats.

3. The opcode field of an instruction specifies the address field of operand on which
data processing is to be performed.

i 4. The operands placed in processor registers are fetched faster than that of
operands placed in memory.

i 5. Operands must refer to data and cannot be data.

1.3 INSTRUCTION SET DESIGN
f

- CONSIDERATIONS

Some of the basic considerations for instruction set design include selection of:

A set of data types (e.g. integers, long integers, doubles, character strings etc.).
A set of operations on those data types. '
A set of instruction formats. Includes issues like number of addresses,
instruction length etc.
A set of techniques for addressing data in memory or in registers.
The number of registers which can be referenced by an instruction and how

I they are used.
1

We will discuss the above concepts in more detail in the subsequent sections.

1.3,l Operand Data Types

Operand is that part of an instruction that specifies the address of the source or result,
or the data itself on which the processor is to operate. Operand types usually give
operand size implrcitly. In general, operand data types can be divided in the following
categories. Refer to figure 2:

,
Operand Data Types

t I

Addresses ~3 Characters

EBCDIC etc.)

Logical
Data (0 or 1
values only)

Floating Point
(Single or Double

Precision)

Fixed Point
(Signed or
Unsigned)

Binary Coded
Decimal

Figure 2: Operand Data Types

Addresses: Operands residing in memory are specified by their memory address
and operands residing in registers are specified by a register address. Addresses
provided in the instruction are operand references.

Numbers: A11 machine languages include numeric data types. Numeric data
usually use one of three representations:

Floating-point numbers-single precision (1 sign bit, 8 exponent bits, 23
mantissa bits) and double precision (1 sign bit, 11 exponent bits, 52 mantissa
bits).

Instruction Set
Architecture

The Central
Processing Unit Binary Coded Decimal Numbers. 1

Most of the machines provide instructions for performing arithmetic operations
on fixed point and floating-point numbers. However, there is a limit in magnitude
of numbers due to underflow and overflow.

Characters: A common form of data is text or character strings. Characters are
represented in numeric form, mostly in ASCII (American Standard Code for
Information Exchange). Another Code used to encode characters is the Extended
Binary Coded Decimal Interchange Code (EBCDIC).

Logical data: Each word or byte is treated as a single unit of data. When an n-bit
data unit is considered as consisting of n 1 -bit items of data with each item
having the value 0 or 1, then they are viewed as logical data. Such bit-oriented
data can be used to store an array of Boolean or binary data variables where each
variable can take on only the values 1 (true) and 0 (false). One simple application
of such a data may be the cases where we manipulate bits of a data item. For
example, in floating-point addition we need to shift mantissa bi,ts.

1.3.2 Types of Instructions

Computer instructions are the translation of high level language code to machine level
language programs. Thus, from this point of view the machine instructions can be
classified under the following categories. Refer to figure 3:

Types of Instructions

I

Instructions Instructions Instruction

Figure 3: Types of Instructions

Data Transfer Instructions

These instructions transfer data from one location in the computer to another location
without changing the data content. The most common transfers are between:

processor registers and memory,
processor registers and U 0 , and
processor registers themselves.

These instructions need:

the locat~on of source and destination operands and
e the mode of addressing for each operand. Given below is a table, which lists

eight data transfer instructions with their mnemonic symbols. These symbols are
used for understanding purposes only, the actual instructions are binary. Different
computers may use different mnemonic for the same instruction.

pixchange 1 XCH (Swaps information between two registers or a Instruction Set
Architecture

CLEAR
SET
PUSH

register and a memory word.
Causes the specified operand to be replaced by 0's.
Causes the specified operand to be replaced by 1's.
Transfers data from a processor register to top of

1)ata Processing Instructions

L

These instructions perform arithmetic and logical operations on data. Data
PAanipulation Instructions can be divided into three basic types:

Arithmetic: The four basic operations are ADD, SUB, MUL and DIV. An arithmetic
bistruction may operate on fixed-point data, binary or decimal data etc. The other
possible operations include a variety of single-operand instructions, for example
ABSOLUTE, NEGATE, INCREMENT, DECREMENT.

POP

l'he execution of arithmetic instructions requires bringing in the operands in the
operational registers so that the data can be processed by ALU. Such hactionality ia
implemented generally within instruction execution steps.

memory stack.
Transfers data from top of stack to processor
register.

1,ogical: AND. OR, NOT, XOR operate on binary data stored in registers. For
example, if two registers contain the data:

ELI AND R2 = 10 1 1 0000. Thus, the AND operation can be used as a mask that selects
certain bits in a word and zeros out the remaining bits. With one register is set to all
1 's, the XOR operation inverts those bits in R, register where R2 contains 1.

Shift: Shift operation is used for transfer of bits either to the left or to the right. It can
be used to realize simple arithmetic operation or data communication/recognition etc,
Shift operation is of three types:

1. Logical shifts LOGICAL SHIFT LEFT and LOGICAL SHIFT RIGHT inserf
zeros to the end bit position and the other bits of a word are shifted left or right
 respective!^. The end bit position is the leftmost bit for shift right and the
rightmost bit position for the shift left. The bit shifted out is lost.

Logical Shift Right

Logical Shift Left
Figure 4: Logical Shift

2. Arithmetic shifts ARITHMETIC SHIFT LEFT and ARITHMETIC SHIFT
RIGHT are the same as LOGICAL SHIFT LEFT and LOGICAL SHIFT RIGHT

The Central
Processing Unit

except that the sign bit it remains unchanged. On an arithmetic shift right, the
sign bit is replicated into the bit position to its right. On an arithmetic shift left, a
logical shift left is performed on all bits but the sign bit, which is retained.

The arithmetic left shift and a logical left shift when performed on numbers
represented in two's complement notation cause multiplication by 2 when there is
no overflow. Arithmetic shift right corresponds to a division by 2 provided there
is no underflow.

3. Circular shifts ROTATE LEFT and ROTATE RIGHT. Bits shifted out at one
end of the word are not lost as in a logical shift but are circulated back into
the other end.

Character and String Processing Instructions: String manipulation typically is
done in memory. Possible instructions include COMPARE STRING, COMPARE
CHARACTER, MOVE STRING and MOVE CHARACTER. While compare
character usually is a byte-comparison operation, compare string always involves
memory address.

Stack and register manipulation: If we build stacks, stack instructions prove to be
useful. LOAD IMMEDIATE is a good example of register manipulation (the value
being loaded is part of the instruction). Each CPU has multiple registers, when
instruction set is designed; one has to specify which register the instruction is refemng
to.

No operation (or idle) is needed when there is nothing to run on a computer.

Program Control Instructions

These instructions specify conditions for altering the sequence of program execution
or in other words the content of PC (program counter) register. PC points to memory I
location that holds the next instruction to be executed. The change in value of-PC as a
result of execution of control instruction like BRANCH or JUMP causes a break in

I
the sequential execution of instructions. The most common control instructions are: 1

I
BRANCH and JUMP may be conditional or unconditional. JUMP is an
unconditional branch used to implement simple loops. JNE jump not equal is a
conditional branch instruction. The conditional branch instructions such as BRP X
and BRN X causes a branch to memory location X if the result of most recent
operation is positive or negative respectively. If the condition is true, PC is loaded
with the branch address X and the next instruction is taken from X, otherwise, PC is
not altered and the next instruction is taken from the location pointed by PC. Figure 5
shows an unconditional branch instruction, and a conditional branch instruction if the
content of AC is zero.

MBR 4- 0 ; Assign 0 to MBR register

X t 2001 ; Assume X to be an address location 2001

READ X ; Read a value from memory location 2001 into AC

BRZ 1007 ; Branch to location 1007 if AC is zero (Conditional branch
,i$ zero)

ADD MBR ; Add the content of MBR to AC and store result to AC

TRAS MBR ; Transfer the contents of AC to MBR
INC X ; Increment X to point to next location
JUMP 1001 ; Loop back for further processing.

(a) A program on hypothetical machine

Instruction Set
Architecture

OFFF
1000
1001 - . .

1002 i

Unconditional 1005 1 Conditional Branch
Branch 1006 : JUMP 1001

1 1007

(b) The Memory of the hypothetical machine

Figure 5: BRANCH & JUMP Instructions

The program given in figure 5 is a hypothetical program that performs addition of
n~mbers stored from locations 2001 onwards till a zero is encountered. Therefore, X
is initialized to 2001, while MBR that stores the result is initialized to zero. We have
a:;sumed that in this machine all the operations are performed using CPU. The
programs will execute instructions as:

1 " Cycle:
1001 (with location X = 2001 which is value 10) 3 1002 3 1003 3

10043 1005 (X is incremented to 2002)3 1006
2'd Cycle

L O 1 (with X = 2002 which is 20) 3 1002 3 1003 3 1004 3 1005
is 2003) 3 1006

3'd Cycle

G O 1 (with X = 2003 which is 30) 3 1002 3 1003 31004 3 1005 (xi!
2004) 3 1006

4 cycle

L O 1 (with X = 2004 which is 0) 3 1002 [AC contains zero so take a
branch to 10071

.......... C 1007.. (MBR contains the added value)

The SKIP instruction is a zero-address instruction and skips the next instruction
to be executed in sequence. In other words, it increments the value of PC by one
instruction length. The SKIP can also be conditional. For example, the instruction
ISZ skips the next instruction only if the result of the most recent operation is
zero.

CALL and RETN are used for CALLing stibprograms and RETurning from
them. Assume that a memory stack has been built such that stack pointer points to
a non-empty location stack and expand towards zero address.

The Central
Processing Unit

CALL:

CALL X Procedure Call to function /procedure named X
CALL instruction causes the following to happen:

1. Decrement the stack pointer so that we will not overwrite last thing put on
stack, 4

(SP t SP- 1)

Stack top
prior to

R o w orContml

102

103

II-
zcr,

20 1

202
Submutins
cliccution

I
3tr1
104

@) Flow of Control

PC= 102 PC = 200 PC = 102
(address of X)

I
500
501
502 502
503 503
504 504 C SP 504
505

pnor to prior 10
call call

(Init~al (procedure
state) call) return)

(c) Memory Stack Values for first call
Figure 6: Call and Return Statements

2. The contents of PC, which is pointing to NEXT instruction, the one just after the
CALL is pushed onto the stack, and, M [SP] +PC.

3. JMP to X, the address of the start of the subprogram is put in the PC register; this
is all a jump does. Thus, we go off to the subprogram, but we have to remember
where we were in the calling program, i.e. we must remember where we came
from, so that we can get back there again.

P C t X

*RETN Return from procedure.
RETN instruction causes the following to happen:

1. Pops the stack, to yield an addressllabel; if correctly used, the top of the
stack will contain the address of the next instruction after the call from
which we are returning; it is this instruction with which we want to resume
in the calling program;

2. Jump to the popped address, i.e., put the address into the PC register.

PC f top of stack value; Increment SP.

Miscellaneous aud Privileged Instructions: These instructions do not fit in any of
the above categories. 110 instructions: start 110, stop VO, and test VO. Typically, VO
destination is specified as an address. Interrupts and state-swapping operations: There

b

are two kinds of exceptions, interrupts that are generated by hardware and traps,
. which are generated by programs. Upon receiving interrupts, the state of current

processes will be saved so that they can be restarted after the interrupt has been taken

Most computer instructions are divided into two categories, privileged and non-
privileged. A process running in privileged mode can execute all instructions from the
instruction set while a process running in user mode can only execute a sub-set of the
instructions. I10 instructions are one example of privileged instruction, clock

1 int1:rrupts are another one.

[1.3.3 Number of Addresses in an Instruction

In general, the Instruction Set Architecture (ISA) of a processor can be differentiated
using five categories:

Instruction Set
Architecture

Operand Storzge in the CPIJ - Where are the operands kept other than the
memory?
Number of explicitly named operands - How many operands are narned in an
instructiori?
Operand location - Can any ALU instruction operand be located in memory? Or
must all operands be kept internally in the CPU registers?
Operatiom - What operations are provided in the ISA?
Type and size of operands - What is the type and size of each operand and how
is it specified?

As far as operations and type of operands are concerned, we have already discussed
a b ~ u t these in the previous subsection. In this section let us look into some ofthe
architectures that are common in contemporary computer. But before we dlscuss the
architectures, let us look into some basic instruction set characteristics:

The operands can be addressed in memory, registers or VO device address.
Instructio~l having less number of operand addresses in an instruction may
require lesser bits in the instruction; however, it also restricts the range of
functionality that can be performed by the instructions. This implies that a CPU
instruction set having less number of addresses has longer programs, which
means longer instruction execution time. On the other hand, having more

, addresses may lead to more complex decoding and processing circuits.
Most of the instructions do not require more than three operand addresses.
Instructions having fewer addresses than three, use registers implicitly for
operand locations because using registers for operand references c m result in
smaller instructions as only few bits are needed for register addresses as against
memo j addresses.
The type of internal storage of operands in the CPU is the most basic
differentiation.

i

The Central
Processing Unit The three most common types of ISAs are:

1. Evaluation Stack: The operands are implicitly on top of the stack.
2. Accumulator: One operand is implicitly the accumulator.
3. General Purpose Register (GPR): All operands are explicit, either registers or

memory locations.

Evaluation Stack Architecture: A stack is a data structure that implements Last-In-
First-Out (LIFO) access policy. You could add an entry to the stack with a
PUSH(va1ue) and remove an entry from the stack with a POP(). No explicit operands
are there in ALU instructions, but one in PUSHPOP. Examples of such computers are
Burroughs B5500/6500, HP 3000/70 etc.

On a stack machine "C = A + B" might be implemented as:.

PUSH A
PUSH B

ADD // operator POP operand(s) and PUSH result(s) (implicit on top of stack)

POP C

Stack Architecture: Pros and Cons

Small instructions (do not need many bits to specify the operation).
Compiler is easy to write.
Lots of memory accesses required - everything that is not on the stack is in
memory. Thus, the machine performance is poor.

Accumulator Architecture: An accumulator is a specially designated register that
supplies one instruction operand and receives the result. The instructions in such
machines are normally one-address instructions. The most popular early architectures
were IBM 7090, DEC PDP-8 etc.

On an Accumulator machine "C = A + B" might be implemented as:

LOAD A // Load memory location A into accumulator
ADD B // Add memory location B to accumulator
STORE C N Store accumulator value into memory location C

Accumulator Architecture: Pros and Cons

Implicit use of accumulator saves instruction bits.
Result is ready for immediate reuse, but has to be saved in memory if next
computation does not use it right away.
More memory accesses required than stack. Consider a program to do the
expression:
A = B * C + D * E .

I

Evaluation of Stack Machine Accu_mulator Machine
Program Comments Programs Comments

PUSH B Push the value B LOAD B Load B in AC
PUSH C Push C MULT C Multiply AC with

C in AC
MULT Multiply (BxC) STORE T Store BxC into

and store result on Temporary T
stack top

PUSH D Push D LOAD D Load D in AC
PUSH E Push E MULT E Multiply E in AC

1
General Purpose Register (GPR) Architecture: A register is a word of internal

I
memory like the accumulator. GPR architecture is an extension of the accumulator

I idea, i.e., use a set of general-purpose registers, which must be explicitly named bL the
instruction. Registers can be used for anything either holding operands for operations

F
or temporary intermediate values. The dominant architectures are IBM 370, PDP-11
artd all Reduced Instant Set Computer (RISC) machines etc. The major instruction set
cl~aracteristic whether an ALU instruction has two or more operands divides GPR
architectures:

"(2 = A + B" might be implemented on both the architectures as:

Register - Memory LoadIStore through Registers
LOAD R1, A LOAD R1, A
ADD R1, B LOAD R2, B
STORE C, R1 ADD R3, R1, R2

STORE C, R3

I Cienerai Purpose Register Architecture: Pros and Cons

-
MULT

- -
AIID
-
POP A

Registerr; can be used to store variables as it reduces memory traffic and speeds
up execution. It also improves code density, as register names are shorter than
memory addresses.

e Instructions must include bits to specify which register to operate on, hence
large instruction size than accumulator type machines.

r Memory access can be minimized (registers can hold lots of intermediate
values).

a Implementation is complicated, as compiler writer has to attempt to maximize

i register usage.

Multiply DxE and
store result on
stack top
Add the top two
values on the stack
Store the value in
A

ADD T

STORE A

While most early machines used stack or accumulator architectures, in the last 15
years all CPUs made are GPR processors. The three major reasons are that registers
are faster than memory; the more data that can be kept internally in the CPU the faster
the program will run. The third reason is that registers are easier for a compiler to use.

BxC + DxE

Store Result in A

Instruction Set
Architecture

13ut while CPU's with GPR were clearly better than previous stack and accumulator
based CPU's yet they were lacking in several areas. The areas being: Instructions
were of varying length from 1 byte to 6-8 bytes. This causes problems with the pre-
aching and pipelining of instructions. ALU instructions could have operands that
were memory locations because the time to access memory is slower and so does the
whole instruction.

rhus in the early 1980s the idea of RISC was introduced. RISC stands for Reduced
Instruction Set Computer. Unlike CISC, this ISA uses fewer instructions with simple
constructs so they can be executed much faster within the CPU without having to use
memory as often. The first RISC CPU, the MIPS 2000, has 32 GPRs. MIPS is a
loadstore architecture, which means that only load and store instructions access
memory. All other computational instructions operate only on values stored in
registers.

The Central
Processing Unit Check Your Progress 2 I

!
I . Match the following pairs: I

(a) Zero address instruction (i) Accumulator machines
(b) One address instruction (ii) General Purpose Register machine
(c) Three address instruction (iii) Evaluation-Stack machine

2. List the advantages and disadvantages of General Purpose Register machines.

3. Categorize the following operations with the respective instruction types:

(a) MOVE
(b) DIV
(c) STORE
(d) XOR
(el BRN
(f) COMPARE
(g) TRAP

(i) Data Processing Instructions
(ii) Data Transfer Instructions
(iii) Privileged Instructions
(iv) Program Control Instructioi~s

1.4 ADDRESSING SCHEMES

As discussed earlier, an operation code of an instruction specifies the operation to be
performed. This operation is executed on some data stored in register or memory.'
Operands niay be specified in one of the three basic forms i.e., immediate, register,
and memory.

But, why addressing schemes? The question of addressing is concerned with how '
operands are interpreted. In other words, the term 'addressing schemes' refers to the
mechanism employed for specifying operands. There are a multitude of addressing
schemes and instruction formats. Selecting which schemes are available will impact
not only the ease to write the compiler, but will also determine how efficient the
architecture can be?

All computers employ more than one addressing schemes to give programming
flexibility to the user by providing facilities such as pointers to memory, loop control,
indexing of data, program relocation and to reduce the number of bits in the operand
field of the instruction. Offering a variety of addressing modes can help reduce
instruction counts but having more modes also increases the complexity of the
machine and in turn may increase the average Cycles per Instruction (CPI). Before we
discuss the addressing modes let us discuss the notations being used in this section.

In the description that follows the symbols A, Al , A2 etc. denote the content of
an operand field. Thus, Ai may refer to a data or a memory address. In case the
operand field is a register address, then the symbols ,R, R1, R2, ... etc., are used. If C
denotes the contents (either of an operand field or a register or of a memory location),
then (C) denotes the content of the memory location whose address is C.

The symbol EA (Effective Address) refers to a physical address in a non-virtual
memory environment and refers to a register in a virtual memory address
environment. This register address is then mapped to physical memory address.

e

What is a virtual address? von Neumann had suggested that the execution of a
program is possible only if the program and data =&residing in memory. In such a
situation the progrzm length along with data and other space needed for execution
cannot exceed the total memory. However, it was found that at the time of execution,
the complete portion of data and instruction is not needed as most of the time only few
areas of the program are being referenced. Keeping this in mind a new idea was put

forward where only a required portion is kept in the memory while the rest of the Instruction Strt
Architecture

program and data reside in secondary storage. The data or program portion which are
stored on secondary storage are brought to memory whenever needed and the portion
of memory which is not needed is returned to the secondary storage. Thus, a program
size bigger than the actual physical memory can be executed on that machine. This is
called virtual memory. Virtual memory has been discussed in greater details as part of
the operating system.

The typicality of virtual addresses is that:

they are longer than the physical addresses as total addressed memory in virtual
memory is more than the actual physical memory.

r if a virtual addressed operand is not in the memory then the operating system
brings that operand to the memory.

The symbols D, Dl, D2, ..., etc. refer to actual operands to be used by instructions for
their execution. 1
Most of the machines employ a set of addressing modes. In this unit, we will describe
some very common addressing modes employed in most of the machines. A specific
addressing mode example, however, is given in Unit 1 of Block 4.

The following tree shows the common addressing modes: I
Addressing Modes

I I 1 I I
Immediate Memory Register Displacement Stack , ,Referen; , Refereice , Addrring Addressing

i
I
I I
I Memory Memory ~ e ~ i s t e r Register
f Direct Indirect Indirect

Indexed Base Relative
Addressing Addressing Addressing

Figure 7: Common Addressing Modes

But what are the uses /applications of these addressing modes? 1
I In general not all of the above modes are used for all applications. However, some of

the common areas where compilers of high-level languages use them are:

Index To access members of an array
Auto-index mode For pushing or popping the parameters of procedures
Base Register Employed to relocate the programs in memory specially in

multi-programming systems - -
Index Accessing iterative local variables such as arrays
Stack Used for local variables

The Central
Proceqsing Unit 1.4.1 Immediate Addressing I

4
When an operand is interpreted as an immediate value, e.g. LOAD IMMEDIATE 7,
it is the actual value 7 that is put in the CPU register. In this mode the operand is the
data in operand address field of the instruction. Since there is no address field at all,
and hence no additional memory accesses are required for executing this instruction.
In other words, in this addressing scheme, the actual operand D is A, the content of
the operand field: i.e. D = A. The effective address in this case is not defined.

Main Memory , Main Memory
I

Instruction 1-1
Figure 8: Immediate Addressing 1

Salient points about the addressing mode are: 1
This addressing mode is used to initialise the value of a variable.
The advantage of this mode is that no additional memory accesses are required
for executing the instruction.
The size of instruction and operand field is limited. Therefore, the type of data
specified under this addressing scheme is also restricted. For example, if an
instruction of 16 bits uses 6 bits for opcode and 2 bits for addressing mode, then
10 bits can be used to specify an operand. Thus, 2'' possible values only can be
assigned.

1.4.2 Direct Addressing

In this scheme the operand field of the instruction specifies the direct address of the
intended operand, e.g., if the instruction LOAD 500 uses direct addressing, then it will
result in loading the contents of memory cell 500 into the CPU register. In this mode
the intended operand is the address of the data in operation. For example, if memory
cell 500 contains 7, as in the diagram below, then the value 7 will be loaded to CPU
register.

Addressing mode Main Memory
(Direct) 7 I I

Opcode -$ \r Operand Addms

LOAD D 500

O 0

...... 011 1
500

Figure 9: Direct Addressing

Some salient points about this scheme are:

e This scheme provides a limited address space because if the address field has n
bits then memory space would contain 2" memory words or locations. For
example, for the example machine of Figure 1, the direct addresses memory
space would be 2".

e The effective address in this scheme is defined as the address of the operand,
that is,

EA C A and (EA in the above example will be 500)
D = (EA) (D in the above example will be 7)

The second statement implies that the data is stored in the memory location
specified by effective address.

e In this addressing scheme only one memory reference is required to fetch the
operand.

1.4.3 Indirect Addressing

In this scheme :he operand field of the instruction specifies the address of the
address of intended operand, e.g., if the instruction LOAD I 500 uses indirect
addressing scheme, and contains a value 50A, and memory location 50A contains 7,
then the value '7 will get loaded in the CPU register.

h4am Mmow

Figure 10: Indirect Addressing

Instruction Set
Architecture

Some salient points about this scheme are:

In this addressing scheme the effective address EA and the contents of the
operand field are related as:

EA = (A) and (Content of location 500 that is 50A above)
D = (EA) (Contents of location 50A that is 7)

The drawback of this scheme is that it requires two memory references to fetch
the actual operand. The first memory reference is to fetch the actual address of
the operand from the memory and the second to fetch the actual operand using
that address.

0 In this scheme the word length determines the size of addressable space, as the
actual address is stored in a Word. For example, the memory having a word size
of 32 bits can have 232 indirect addresses.

1.4.4 Register Addressing

The Central
Processing Unit

Instruction

Register set

Figure 11: Register Addressing

The major advantages of register addressing are:

Register access is faster than memory access and hence register addressing
results in faster instruction execution. However, register obtains operands only
fiom memory; therefore, the operands that should be kept in registers are
selected carefully and efficiently. For example, if an operand is moved into a
register and processed only once and then returned to memory, then no saving
occurs. However if an operand is used repeatedly afier bringing into register
then we have saved few memory references. Thus, the task of using register
eficiently deals with the task of finding what operand values should be kept in
registers such that memory references are minimised. Normally, this task is
done by a compiler of a high level language while translating the program to
machine language. As a thumb rule the frequently used local variables are kept
in the registers.
The size of register address is smaller than the memory address. It reduces the
instruction size. For example, for a machine having 32 general purpose registers
only 5 bits are needed to address a register.

In this addressing scheme the effective address is calculated as:

E A = R
D = (EA)

1.4.5 Register Indirect Addressing

In this addressing scheme, the operand is data in the memory pointed to by a register.
In other words, the operand field specifies a register that contains the address of the
operand that is stored in memory. This is almost same as indirect addressing scheme
except it is much faster than indirect addressing that requires two memory acce9e.-

Instruction

b Aclclress of - o p r r a ~ ~ J
- e- " .-.,

oprjra~ld w

Register set

Figure 12: Register Indirect Addressidg

The effective address of the operand in this scheme is calculated as!

EA= (R) and

i
D = (EA)

The address capzbility of register indirect addressing scheme is deternlined by the size
L

of the register.

1.4.6 Indexed Addressing Scheme

In this scheme the operand field of the instruction contains an address and an index
register, which contains an offset. This addressing scheme is generally used to address
the consecutive locations of memory (which may store the elements of an array). The
index register is a special CPU register that contains an index value. The contents of
the operand field A are taken to be the address of the initial or the reference location
(01- the first element of array). The index register specifies the distance between the
starting address and the address of the operand.

Fcr example, to address of an element B[i] of an array B[l], B[2], B[n], with each
element of the array stored in two consecutive locations, and the starting address of
the array is assumed to be 101, the operand field A in the instruction shall contain the
number 10 1 and the index register R will contain the value of the expression
(i - 1) x 2.

Tlius, for the first element of the array the index register will contain 0. For addressing
5th element of the array, the A- 10 1 whereas index register will contain:

Therefore, the address of the 5th element of array B is=lOl+8= 109. In B[5], however,
the element will be stored in location 109 and 1 10. 'To address any other element of
the array, changing the content of the index register will suffice.

3 TIUS, the effective a2dress in this scheme is calculated as:

EA = A +(R)
D = (EA)
(DA is Direct address)

As the index register is used for iterative applications, therefore, the value of index
register is incremented or decremented after each reference to it. In several systems
this operation is performed automatically during the course of an instruction cycle.
This feature is known as auto-indexing. Auto indexing can be auto-incrementing or
auto-decrementing. The choice of register to be used as an index register differs from
machine to machine. Some machines employ general-purpose registers for this
purpose while other machines may specify special purpose registers referred to as
ixtdex registers.

Ma~n Memory

Figure 13: For Displacement Addressing

1.4.7 Base Register Addressing

im addressing scheme in which the content of an instruction specifies base register is
added to the displacement field or address field of the instruction. (Refer to Figure

Instruction Set
Architecture

The Central
Processing Unit

t

13). The displacement field is taken to be a positive number. For example, if a
displacement field is of 8 bits then a memory region of 256 words beginning at the
address pointed to by the base register can be addressed by this mode. This is similar
to indexed addressing scheme except that the role of Address field and Register is
reversed. In indexing Address field of instruction is fixed and index register value is
changed, whereas in Base Register addressing, the Base Register is common and
Address field of the instruction in various instructions is changed. In this case:

EA = A+ (B)
D = (EA)
(B) Refers to the contents of a base register B.

The contents of the base register may be changed in the privileged mode only. No user
is allowed to change the contents of the base register. The base-addressing scheme
provides protection of users from one another.

This addressing scheme is usually employed to relocate the programs in memory
specially in multiprogramming systems in which only the value of base register
requires updating to reflect the beginning of a new memory segment.

Like index register a base register may be a general-purpose register or a special
register reserved for base addressing.

1.4.8 Relative Addressing Scheme

In this addressing scheme, the register R is the program counter (PC) containing the
address of the current instruction being executed. The operand field A contains the
displacement (positive or negative) of an instruction or data with respect to the current
instruction. This addressing scheme has advantages if the memory references are
nearer to the current instruction being executed. (Please refer to the Figure 13).

Let us give an example of Index, Base and Relative addressing schemes.

Example 1 : What would be the effective address and operand value for the following
LOAD instructions:

(i) LOAD IA 56 R1 Where IA indicates index addressing, R1 is index register
and 56 is the displacement in Hexadecimal.

(ii) LOAD BA 46 B1 Where BA indicates base addressing, B 1 is base register and
46 is the displacement specified in instruction in
Hexadecimal notation.

(iii) LOAD R4 36 Where R4 specifies relative addressing.

&he values of registers and memory is given below:

Values of Memory Location

27A8

The values are shown in the following table:
Instruction Set

Architecture

addressing mode I
k d e x Addressing / EA = A+(K) 1 56 + 2752 = 27AgH 1 10"

--
(jdressing Mode I Formulae for

1.4.9 Stack Addressing

EA I Data Value

-

In this addressing scheme, the operand is implied as top of stack. It is not explicit, but
implied. It use:; a CPU Register called Stack Pointer (SP). The SP points to the top of
the stack i.e. to the memory location where the last value was pushed. A stack
provides a sort-of indirect addressing and indexed addressing. This is not a very
common addressing scheme. The operand is found on the top of a stack. In some
machines the top two elements of stack and top of stack pointer is kept in the CPU
registers, while the rest of the elements may reside in the memory. Figure 14 shows
the stack addressing schemes.

Main Memory,

D= (E A L

I 'Top of stack
Register

Implicit opetand

EA = A+ (B)
EA = (PC) + A

Figure li: Stack Addressing

Check Your Progress 3

46 + 2260 = 2 2 A 6 ~
2532 + 36 = 2 5 6 8 ~

1. What are the numbers of memory references required to get the data for the
following addressing schemes:

2 5 ~
7 0 ~

(i) lmmediate addressing
(ii) Direct addressing
(iii) Indirect addressing
(iv) Register Indirect addressing
(v) Stack addressing.

2. What are the advantages of Base Register addressing scheme?

3. State 'True or False.

(i) Immediate addressing is best suited for initialization of variables.

(ii) Index addressing is used for accessing global variables.

(iii) Indirect addressing requires fewer memory accesses than that of direct
addressing.

(iv) In stack addressing, operand is explicitly specified.

The Central
Processing Unit 1.5 INSTRUCTION SET AND FORMAT DESIGN

ISSUES

Some of the basic issues of concerns for instruction set design are:

Completeness: For an initial design, the primary concern is that the instruction set
should be complete which means there is no missing functionality, that is, it should
include instructions for the basic operations that can be used for creating any possible
execution and control operation.

Orthogonal: The secondary concern is that the instructions be orthogonal, that is, not I

unnecessarily redundant. For example, integer operation and floating number
operation usually are not considered as redundant but different addressing modes may
be redundant when there are more instructions than necessary because the CPU takes
longer to decode.

An instruction format is used to define the layout of the bits allocated to these
elements of instructions. In addition, the instruction format explicitly or implicitly
indicates the addressing modes used for each operand in that instruction.

Designing of instruction format it is a complex art. In this section, we will discuss
about the design issues for instruction sets of the machines. We will discuss only point
wise details of these issues.

1.5.1 Instruction Length 1
Significance: It is the basic issue of the format design. It determines the richness and
flexibility of a machine.

Basic Tardeoff: Smaller instruction (less space) Versus desire for more powerful
instruction repertoire.

Normally programmer desire:

More op-code and operands: as it results in smaller programs 1
More addressing modes: for greater flexibility in implementing functions like
table manipulations, multiple branching.

However, a 32 bit instruction although will occupy double the space and can be
fetched at double the rate of a 16 bit instruction, but can not be doubly usefbl.

Factors, which must be considered for deciding about instruction length

Memory size : if larger memory range is to be addressed, then
more bits may be required in address field. 1

Memory organization : if the addressed memory is virtual memory then
memory range which is to be addressed by the
instruction is larger than physical meinory size.

Memory transfer length

Memory transfer

: instruction length should normally be equal to
data bus length or multiple of it.

: the data transfer rate from the memory ideally
should be equivalent to the processor speed. It
can become a bottleneck if processor executes
instructions faster than the rate of fetching the
instructions. One solution for such problem is
to use cache memory or another solution can be
to keep instruction short.

Nonnally an instruction length is kept as a multiple of length of a character (that is 8
bits), and equal to the length of fixed-point number. The term word is often used in
this context. Usually the word size is equal to the length of fixed point number or
equal to memory-transfer size. In addition, a word should store integral number of
characters. Thus, word size of 16 bit, 32 bit, 64 bit are to be coming very common and

$ hence the similar length of instructions are normally being used.
I
I

1.5.2 Allocation of Bits Among Opcode and Operand
?

The tradeoff here is between the numbers of bits of opcode versus the addressing
1 capabilities. An interesting development in this regard is the development of variable

I
length opcode.

Sorne of the factors that are considered for selection ofaddressing bits:

Number of addressing modes: The more are the explicit addressing modes the
more bits are needed for mode selection. However, some machines have implicit
modes of addressing.
Number of operands: Fewer number of operand references in an instruction
although require less bits yet result in longer programs. Present day machines
generally have two operand references in an instruction. Each of these operands
may need a addressing mode indicator field.

Register addressing versus memory addresses: The register references require
fewer bits in comparison to the memory addresses. In general, the number of user
visible registers provided is 16 to 32. Some of these registers may be used for
special purposes.
~ranularity of address: As far as memory references are concerned, granularity
implies whether an address is referencing a byte or a word at a time. This is more
relevant for machines, which have 16 bits, 32 bits and higher bits words. Byte
addressing although may be better for character manipulation, however, requires
more bits in an address. For example, memory of 4K words (1 word = 16 bit) is
to be addressed directly then it requires:

WORD Addressing = 4K words
= 212 words
3 12 bits are required for word addressing.

Byte Addressing = 212 words
= 213 bytes ,

13 bits are required for byte addressing.

1..5.3 Variable-Length of Instructions

With the better understanding of computer instruction sets, the designers came up with
tt,e idea of having a variety of instruction formats of different length. What could be
the advantages of such a set? The advantages of such a scheme are:

Large number of operations can be provided which have different lengths of
instructions.
Flexibility in addressing scheme can be provided efficiently and compactly.

:m However, the basic disadvantage of such a scheme is to have a complex CPU.

Instruction Set
Architecture

Pa important aspect about these variables length instructions is: "The CPU is not
aware about the bngth of next instruction which is to be fetched". This problem can
behandled if each instruction fetch is made equal to the size of the longest instruction.

The Central
Processing Unit

1
1.6 EXAMPLE OF INSTRUCTION FORMAT

Let us provide you a basic example by which you may be able to define the concept of
instruction format.

MIPS 2000 \
Let's consider the instruction format of a MIPS computer. MIPS is an acronym for
Microprocessor without Interlocked Pipeline Stages. It is a microprocessor
architecture developed by MIPS Computer Systems Inc. most widely known for
developing the MIPS architecture. The MIPS CPU family was one of the most
successful and flexible CPU designs throughout the 1990s. The MIPS CPU has a five-
stage CPU pipeline to execute multiple instructions at the same time. &ow what we
have introduced is a new term Pipelining. What else: the 5 stage pipeline, let us just
introduce it here. It defines the 5 steps of execution of instructions that may be
performed in an overlapped fashion. The following diagram will elaborate this
concept:

Instruction execution stages

Figure15 Pipeline

Please note that in the above figure:

All the stages are independent and distinct, that is, the second stage execution of
, Instruction 1 should not hinder Instruction 2.

The overall efficiency of the system becomes better.

The early MIPS architectures had 32-bit instructions and later versions have 64-bit
implementations.

The first commercial MIPS CPU model, the R2000, whose instruction format is
discussed below, has thirty-two 32-bit registers and its instructions are 32 bits long.

I '

OP rs rt rd shamt funct I I
6 bits 5 bits 5 bits 5 bits 5 bits 5 bits

Figure 16: A Sample Instruction Format of MIPS instruction

The meaning of each field in MIPS instruction is given below:

op : operation code or opcode
rs : The first register source operand
rt : The second register source operand
rd : The destination register operand, stores the result of the operation
shamt : used in case of shift operations
funct : This field selects the specific variant of the operation in the opcode field,

All IvlIPS instructions are of the same length, requiring different kinds of instruction
fonrlats for different types of instructions.

Instruction Format

All MIPS instructions are of the same size and are 32 bits long. MIPS designers chose
to keep all instructions of the same length, thereby requiring different kinds of
instruction formals for different kinds of instructions. For example, R-type (register)
or F:-format is used for arithmetic instructions (Figure 16). A second type of
instruction forma; is called i-type or i-format and is used by the data transfer
instructions.

1nst.ruction format of I-type instructions is given below:

I Figure 17: I-format of RTSC

rt

The 16-bit address means a load word instruction can load any word within a region
of + 2" of the base register rs. Consider a load word instruction give11 below:

The rt field specifies the destination register, which recelves the result of the load.
I

MlPS Addressing Modes

address

MIPS uses various addressing modes:

6 bits 5 bits 5 bits 16 b~ts
J

I

t 1. Uses Register and Immediate addressing modes for operations.
2. Immediate and Displacement addressing for Load and Store instructions. In

displacenlent addressing, the operand is at the memory location whose address
is the surn of a register.

<:heck Your Progress 4

1. State T n ~ e or False.

(i) Instruction length should normally be equal to data bus length or multiple
of it.

(ii) A long instruction executes faster than a short instruction. C]

(iii) Memory access is faster than register access.

(iv) Large number of opcodes and operands result in bigger program.

(v) A. machine can use at the most one addressing scheme.

Instruction Set
Architecture

(vi) Large number of operations can be provided in the instruction set, which
have variable-lengths of instructions. C]

1.7 SUMMARY

In this unit, we have explained various concepts relating to instructions. We have
discussed the significance of instruction set, various elements of an instruction,
instruction set design issues, different types of ISAs, various types of instructions and
various operations performed by the instructions, various addressing schemes. We
have also provided you the instruction format of MIPS machine. Block 4 Unit 1

29

The Central
Processing Unit

I
contains a detailed instruction set of 8086 machine. You can refer to further reading
for instruction set of various machines.

1.8 SOLUTIONS1 ANSWERS _
I
1

Check Your Progress 1 i
1. True
2. True
3. False
4. True
5. False

Check Your Progress 2

1. (a) - (1) (b) - (i) (c) - (ii)
2.

Speed up of instruction execution as stores temporary results in registers
Less code to execute
Larger instruction set
Difficult for compiler writing

3. (i) - b), d), f) ; (ii) - a), c) ; (iii) - g) ; (iv) - e)

Check Your Progress 3

1 .
a) Immediate addressing - 0 memory access
b) Direct addressing - 1 memory access
c) Indirect addressing - 2 memory accesses
d) Register Indirect addressing - 1 memory access
e) Stack addressing - 1 memory access

2. It allows reallocation of program on reloading. It allows protection of users from
one another memory space.

3. (i) True.
(ii) False.
(iii) False.
(iv) False

Check Your Progress 4

1.
(i) True. I

(ii) False.
(iii) False.
(iv) False.
(v) False.
(vi) True.

