

Control Statements,
Arrays and
Functions

UNIT 6 ARRAYS

Structure

6.0 Introduction
6.1 Objectives
6.2 Array Declaration
 6.2.1 Syntax of Array Declaration
 6.2.2 Size Specification
6.3 Array Initialization
 6.3.1 Initialization of Array Elements in the Declaration
 6.3.2 Character Array Initialization
6.4 Subscript
6.5 Processing the Arrays
6.6 Multi-Dimensional Arrays
 6.6.1 Multi-Dimensional Array Declaration
 6.6.2 Initialization of Two-Dimensional Arrays
6.7 Summary
6.8 Solutions / Answers
6.9 Further Readings

6.0 INTRODUCTION

C language provides four basic data types - int, char, float and double. We have learnt
about them in Unit 3. These basic data types are very useful; but they can handle only
a limited amount of data. As programs become larger and more complicated, it
becomes increasingly difficult to manage the data. Variable names typically become
longer to ensure their uniqueness. And, the number of variable names makes it
difficult for the programmer to concentrate on the more important task of correct
coding. Arrays provide a mechanism for declaring and accessing several data items
with only one identifier, thereby simplifying the task of data management.

Many programs require the processing of multiple, related data items that have
common characteristics like list of numbers, marks in a course, or enrolment numbers.
This could be done by creating several individual variables. But this is a hard and
tedious process. For example, suppose you want to read in five numbers and print
them out in reverse order. You could do it the hard way as:

main()
{
 int al,a2,a3,a4,a5;
 scanf(“%d %d %d %d %d”,&a1,&a2,&a3,&a4,&a5);
 printf(“%d %d %d %d %d”',a5,a4,a3,a2,a1);
}

Does it look good if the problem is to read in 100 or more related data items and print
them in reverse order? Of course, the solution is the use of the regular variable names
a1, a2 and so on. But to remember each and every variable and perform the operations
on the variables is not only tedious a job and disadvantageous too. One common
organizing technique is to use arrays in such situations. An array is a collection of
similar kind of data elements stored in adjacent memory locations and are referred to
by a single array-name. In the case of C, you have to declare and define array before
it can be used. Declaration and definition tell the compiler the name of the array, the
type of each element, and the size or number of elements.To explain it, let us consider
to store marks of five students. They can be stored using five variables as follows:

int ar1, ar2, ar3, ar4, ar5;

 26

Arrays Now, if we want to do the same thing for 100 students in a class then one will find it

difficult to handle 100 variables. This can be obtained by using an array. An array
declaration uses its size in [] brackets. For above example, we can define an array as:

int ar [100];

where ar is defined as an array of size 100 to store marks of integer data-type. Each
element of this collection is called an array-element and an integer value called the
subscript is used to denote individual elements of the array. An ar array is the
collection of 200 consecutive memory locations referred as below:

 2001 2003 2200

 Figure 6.1: Representation of an array

In the above figure, as each integer value occupies 2 bytes, 200 bytes were allocated
in the memory.

This unit explains the use of arrays, types of arrays, declaration and initialization with
the help of examples.

6.1 OBJECTIVES

After going through this unit you will be able to:

• declare and use arrays of one dimension;
• initialize arrays;
• use subscripts to access individual array elements;
• write programs involving arrays;
• do searching and sorting; and
• handle multi-dimensional arrays.

6.2 ARRAY DECLARATION

Before discussing how to declare an array, first of all let us look at the characteristic
features of an array.

• Array is a data structure storing a group of elements, all of which are of the same

data type.
• All the elements of an array share the same name, and they are distinguished

from one another with the help of an index.
• Random access to every element using a numeric index (subscript).
• A simple data structure, used for decades, which is extremely useful.
• Abstract Data type (ADT) list is frequently associated with the array data

structure.

The declaration of an array is just like any variable declaration with additional size
part, indicating the number of elements of the array. Like other variables, arrays must
be declared at the beginning of a function.

The declaration specifies the base type of the array, its name, and its size or
dimension. In the following section we will see how an array is declared:

27

Control Statements,
Arrays and
Functions

6.2.1 Syntax of Array Declaration

Syntax of array declaration is as follows:

data-type array_name [constant-size];

 Data-type refers to the type of elements you want to store
Constant-size is the number of elements

The following are some of declarations for arrays:

int char [80];
float farr [500];
static int iarr [80];
char charray [40];

There are two restrictions for using arrays in C:

• The amount of storage for a declared array has to be specified at compile time
before execution. This means that an array has a fixed size.

• The data type of an array applies uniformly to all the elements; for this reason, an
array is called a homogeneous data structure.

6.2.2 Size Specification

The size of an array should be declared using symbolic constant rather a fixed integer
quantity (The subscript used for the individual element is of are integer quantity). The
use of a symbolic constant makes it easier to modify a program that uses an array. All
reference to maximize the array size can be altered simply by changing the value of
the symbolic constant. (Please refer to Unit – 3 for details regarding symbolic
constants).

To declare size as 50 use the following symbolic constant, SIZE, defined:

#define SIZE 50

The following example shows how to declare and read values in an array to store
marks of the students of a class.

Example 6.1

Write a program to declare and read values in an array and display them.

/* Program to read values in an array*/

include < stdio.h >
define SIZE 5 /* SIZE is a symbolic constant */

main ()
{
int i = 0; /* Loop variable */
int stud_marks[SIZE]; /* array declaration */

/* enter the values of the elements */
for(i = 0;i<SIZE;i++)
 {
 printf (“Element no. =%d”,i+1);

 28 printf(“ Enter the value of the element:”);

Arrays scanf(“%d”,&stud_marks[i]);

 }
printf(“\nFollowing are the values stored in the corresponding array elements: \n\n”);
for(i = 0; i<SIZE;i++)
 {
 printf(“Value stored in a[%d] is %d\n”i, stud_marks[i]);
 }
}

OUTPUT:

Element no. = 1 Enter the value of the element = 11
Element no. = 2 Enter the value of the element = 12
Element no. = 3 Enter the value of the element = 13
Element no. = 4 Enter the value of the element = 14
Element no. = 5 Enter the value of the element = 15

Following are the values stored in the corresponding array elements:

Value stored in a[0] is 11
Value stored in a[1] is 12
Value stored in a[2] is 13
Value stored in a[3] is 14
Value stored in a[4] is 15

6.3 ARRAY INITIALIZATION

Arrays can be initialized at the time of declaration. The initial values must appear in
the order in which they will be assigned to the individual array elements, enclosed
within the braces and separated by commas. In the following section, we see how this
can be done.

6.3.1 Initialization of Array Elements in the Declaration

The values are assigned to individual array elements enclosed within the braces and
separated by comma. Syntax of array initialization is as follows:

data type array-name [size] = {val 1, val 2,val n};

val 1 is the value for the first array element, val 2 is the value for the second element,
and val n is the value for the n array element. Note that when you are initializing the
values at the time of declaration, then there is no need to specify the size. Let us see
some of the examples given below:

int digits [10] = {1,2,3,4,5,6,7,8,9,10};

int digits[] = {1,2,3,4,5,6,7,8,9,10};

int vector[5] = {12,-2,33,21,13};

float temperature[10] ={ 31.2, 22.3, 41.4, 33.2, 23.3, 32.3, 41.1, 10.8, 11.3, 42.3};

double width[] = { 17.33333456, -1.212121213, 222.191345 };

int height[10] = { 60, 70, 68, 72, 68 };

29

Control Statements,
Arrays and
Functions

6.3.2 Character Array Initialisation

The array of characters is implemented as strings in C. Strings are handled differently
as far as initialization is concerned. A special character called null character ‘ \0 ’,
implicitly suffixes every string. When the external or static string character array is
assigned a string constant, the size specification is usually omitted and is
automatically assigned; it will include the ‘\0’character, added at end. For example,
consider the following two assignment statements:

char thing [3] = “TIN”;
char thing [] = “TIN”;

In the above two statements the assignments are done differently. The first statement
is not a string but simply an array storing three characters ‘T’, ‘I’ and ‘N’ and is same
as writing:

char thing [3] = {‘T’, ‘I’, ‘N’};

whereas, the second one is a four character string TIN\0. The change in the first
assignment, as given below, can make it a string.

char thing [4] = “TIN”;

Check Your Progress 1

1. What happens if I use a subscript on an array that is larger than the number of
elements in the array?
……………………………………………………………………………………

……………………………………………………………………………………

2. Give sizes of following arrays.

a. char carray []= “HELLO”;
b. char carray [5]= “HELLO”;
c. char carray []={ ‘H’, ‘E’, ‘L’, ‘L’, ‘O’ };

 ……………………………………………………………………………………

……………………………………………………………………………………

3. What happens if an array is used without initializing it?
……………………………………………………………………………………

……………………………………………………………………………………

4. Is there an easy way to initialize an entire array at once?
……………………………………………………………………………………

……………………………………………………………………………………

5. Use a for loop to total the contents of an integer array called numbers with five
elements. Store the result in an integer called TOTAL.
……………………………………………………………………………………

……………………………………………………………………………………

6.4 SUBSCRIPT

To refer to the individual element in an array, a subscript is used. Refer to the
statement we used in the Example 6.1,

scanf (“ % d”, &stud_marks[i]);

 30

Arrays Subscript is an integer type constant or variable name whose value ranges from 0 to

SIZE - 1 where SIZE is the total number of elements in the array. Let us now see how
we can refer to individual elements of an array of size 5:

Consider the following declarations:

char country[] = “India”;
int stud[] = {1, 2, 3, 4, 5};

Here both arrays are of size 5. This is because the country is a char array and
initialized by a string constant “India” and every string constant is terminated by a
null character ‘\0’. And stud is an integer array. country array occupies 5 bytes of
memory space whereas stud occupies size of 10 bytes of memory space. The
following table: 6.1 shows how individual array elements of country and stud arrays
can be referred:

 Table 6.1: Reference of individual elements

Element
no.

Subscript country array

Reference Value

 stud array

Reference Value

1 0 country [0] ‘I’ stud [0] 1
2 1 country [1] ‘n’ stud [1] 2
3 2 country [2] ‘d’ stud [2] 3
4 3 country [3] ‘i’ stud [3] 4
5 4 country [4] ‘a’ stud [4] 5

Example 6.2

Write a program to illustrate how the marks of 10 students are read in an array and
then used to find the maximum marks obtained by a student in the class.

/* Program to find the maximum marks among the marks of 10 students*/

include < stdio.h >
define SIZE 10 /* SIZE is a symbolic constant */

main ()
{

int i = 0;
int max = 0;
int stud_marks[SIZE]; /* array declaration */

/* enter the values of the elements */
for(i = 0;i<SIZE;i++)
 {
 printf (“Student no. =%d”,i+1);
 printf(“ Enter the marks out of 50:”);
 scanf(“%d”,&stud_marks[i]);
 }

/* find maximum */
for (i=0;i<SIZE;i ++)
 {
 if (stud_marks[i]>max)
 max = stud_marks[i];

31

 }

Control Statements,
Arrays and
Functions

printf(“\n\nThe maximum of the marks obtained among all the 10 students is: %d
 ”,max);
}

OUTPUT

Student no. = 1 Enter the marks out of 50: 10
Student no. = 2 Enter the marks out of 50: 17
Student no. = 3 Enter the marks out of 50: 23
Student no. = 4 Enter the marks out of 50: 40
Student no. = 5 Enter the marks out of 50: 49
Student no. = 6 Enter the marks out of 50: 34
Student no. = 7 Enter the marks out of 50: 37
Student no. = 8 Enter the marks out of 50: 16
Student no. = 9 Enter the marks out of 50: 08
Student no. = 10 Enter the marks out of 50: 37

The maximum of the marks obtained among all the 10 students is: 49

6.5 PROCESSING THE ARRAYS

For certain applications the assignment of initial values to elements of an array is
required. This means that the array be defined globally (extern) or locally as a static
array.

Let us now see in the following example how the marks in two subjects, stored in two
different arrays, can be added to give another array and display the average marks in
the below example.

Example 6.3:

Write a program to display the average marks of each student, given the marks in 2
subjects for 3 students.

/* Program to display the average marks of 3 students */

include < stdio.h >
define SIZE 3
main()
{
int i = 0;
float stud_marks1[SIZE]; /* subject 1array declaration */
float stud_marks2[SIZE]; /*subject 2 array declaration */
float total_marks[SIZE];
float avg[SIZE];

printf(“\n Enter the marks in subject-1 out of 50 marks: \n”);
for(i = 0;i<SIZE;i++)
 {
 printf(“Student no. =%d”,i+1);
 printf(“ Enter the marks= “);
 scanf(“%f”,&stud_marks1[i]);
 }
printf(“\n Enter the marks in subject-2 out of 50 marks \n”);
 for(i=0;i<SIZE;i++)

 32

 {

Arrays printf(“Student no. =%d”,i+1);

 printf(“ Please enter the marks= “);
 scanf(“%f”,&stud_marks2[i]);
 }

 for(i=0;i<SIZE;i++)
 {
 total_marks[i]=stud_marks1[i]+ stud_marks2[i];
 avg[i]=total_marks[i]/2;
 printf(“Student no.=%d, Average= %f\n”,i+1, avg[i]);
 }
 }

OUTPUT

Enter the marks in subject-1out of 50 marks:
Student no. = 1 Enter the marks= 23
Student no. = 2 Enter the marks= 35
Student no. = 3 Enter the marks= 42

Enter the marks in subject-2 out of 50 marks:
Student no. = 1 Enter the marks= 31
Student no. = 2 Enter the marks= 35
Student no. = 3 Enter the marks= 40

Student no. = 1 Average= 27.000000
Student no. = 2 Average= 35.000000
Student no. = 3 Average= 41.000000

Let us now write another program to search an element using the linear search.

Example 6.4

Write a program to search an element in a given list of elements using Linear Search.

/* Linear Search.*/

include<stdio.h>
define SIZE 05
main()
{
int i = 0;
int j;
int num_list[SIZE]; /* array declaration */

/* enter elements in the following loop */

printf(“Enter any 5 numbers: \n”);
for(i = 0;i<SIZE;i ++)
 {
 printf(“Element no.=%d Value of the element=”,i+1);
 scanf(“%d”,&num_list[i]);
 }
printf (“Enter the element to be searched:”);
scanf (“%d”,&j);

/* search using linear search */

33

for(i=0;i<SIZE;i++)

Control Statements,
Arrays and
Functions

 {
 if(j == num_list[i])
 {
 printf(“The number exists in the list at position: %d\n”,i+1);
 break;
 }
 }
}

OUTPUT

Enter any 5 numbers:
Element no.=1 Value of the element=23
Element no.=2 Value of the element=43
Element no.=3 Value of the element=12
Element no.=4 Value of the element=8
Element no.=5 Value of the element=5
Enter the element to be searched: 8
The number exists in the list at position: 4

Example 6.5

Write a program to sort a list of elements using the selection sort method

/* Sorting list of numbers using selection sort method*/

#include <stdio.h>
#define SIZE 5

main()
{

int j,min_pos,tmp;
int i; /* Loop variable */
int a[SIZE]; /* array declaration */

/* enter the elements */

for(i=0;i<SIZE;i++)
 {
 printf(“Element no.=%d”,i+1);
 printf(“Value of the element: “);
 scanf(“%d”,&a[i]);
 }

/* Sorting by descending order*/

for (i=0;i<SIZE;i++)
 {
 min_pos = i;
 for (j=i+1;j<SIZE;j++)
 if (a[j] < a[min_pos])
 min_pos = j;
 tmp = a[i];
 a[i] = a[min_pos];
 a[min_pos] = tmp;
 }

 34

Arrays /* print the result */

printf(“The array after sorting:\n”);
 for(i=0;i<SIZE;i++)
 printf("% d\n",a[i]);
}

OUTPUT

Element no. = 1 Value of the element: 23
Element no. =2 Value of the element: 11
Element no. = 3 Value of the element: 100
Element no. = 4 Value of the element: 42
Element no. = 5 Value of the element: 50

The array after sorting:
11
23
42
50
100

Check Your Progress 2

1. Name the technique used to pass an array to a function.
……………………………………………………………………………………

……………………………………………………………………………………

2. Is it possible to pass the whole array to a function?
……………………………………………………………………………………

……………………………………………………………………………………

3. List any two applications of arrays.
……………………………………………………………………………………

……………………………………………………………………………………

6.6 MULTI-DIMENSIONAL ARRAYS

Suppose that you are writing a chess-playing program. A chessboard is an 8-by-8
grid. What data structure would you use to represent it? You could use an array that
has a chessboard-like structure, i.e. a two-dimensional array, to store the positions of
the chess pieces. Two-dimensional arrays use two indices to pinpoint an individual
element of the array. This is very similar to what is called "algebraic notation",
commonly used in chess circles to record games and chess problems.

In principle, there is no limit to the number of subscripts (or dimensions) an array can
have. Arrays with more than one dimension are called multi- dimensional arrays.
While humans cannot easily visualize objects with more than three dimensions,
representing multi-dimensional arrays presents no problem to computers. In practice,
however, the amount of memory in a computer tends to place limits on the size of an
array . A simple four-dimensional array of double-precision numbers, merely twenty
elements wide in each dimension, takes up 20^4 * 8, or 1,280,000 bytes of memory -
about a megabyte.

35

For exmaple, you have ten rows and ten columns, for a total of 100 elements. It’s
really no big deal. The first number in brackets is the number of rows, the second
number in brackets is the number of columns. So, the upper left corner of any grid

Control Statements,
Arrays and
Functions

would be element [0][0]. The element to its right would be [0][1], and so on. Here is a
little illustration to help.

Three-dimensional arrays (and higher) are stored in the same way as the two-
dimensional ones. They are kept in computer memory as a linear sequence of
variables, and the last index is always the one that varies fastest (then the next-to-last,
and so on).

6.6.1 Multi - Dimensional Array Declaration

You can declare an array of two dimensions as follows:

 datatype array_name[size1][size2];

In the above example, variable_type is the name of some type of variable, such as int.
Also, size1 and size2 are the sizes of the array’s first and second dimensions,
respectively. Here is an example of defining an 8-by-8 array of integers, similar to a
chessboard. Remember, because C arrays are zero-based, the indices on each side of
the chessboard array run 0 through 7, rather than 1 through 8. The effect is the same: a
two-dimensional array of 64 elements.

int chessboard [8][8];

To pinpoint an element in this grid, simply supply the indices in both dimensions.

6.6.2 Initialisation of Two - Dimensional Arrays

If you have an m x n array, it will have m * n elements and will require m*n*element-
size bytes of storage. To allocate storage for an array you must reserve this amount of
memory. The elements of a two-dimensional array are stored row wise. If table is
declared as:

int table [2] [3] = { 1,2,3,4,5,6 };

It means that element
table [0][0] = 1;
table [0][1] = 2;
table [0][2] = 3;
table [1][0] = 4;
table [1][1] = 5;
table [1][2] = 6;

The neutral order in which the initial values are assigned can be altered by including
the groups in { } inside main enclosing brackets, like the following initialization as
above:

int table [2] [3] = { {1,2,3},

 36

 {4,5,6} };

Arrays The value within innermost braces will be assigned to those array elements whose last

subscript changes most rapidly. If there are few remaining values in the row, they will
be assigned zeros. The number of values cannot exceed the defined row size.

 int table [2] [3] = { { 1, 2, 3},{ 4}};

It assigns values as
table [0][0] = 1;
table [0][1] = 2;
table [0][2] = 3;
table [1][0] = 4;
table [1][1] = 0;
table [1][2] = 0

Remember that, C language performs no error checking on array bounds. If you define
an array with 50 elements and you attempt to access element 50 (the 51st element), or
any out of bounds index, the compiler issues no warnings. It is the programmer’s task
to check that all attempts to access or write to arrays are done only at valid array
indexes. Writing or reading past the end of arrays is a common programming bug and
is hard to isolate.

Check Your Progress 3

1. Declare a multi-dimensioned array of floats called balances having three rows
and five columns.
……………………………………………………………………………………

……………………………………………………………………………………

2. Write a for loop to total the contents of the multi-dimensioned float array
balances.
……………………………………………………………………………………

……………………………………………………………………………………

3. Write a for loop which will read five characters (use scanf) and deposit them
into the character based array words, beginning at element 0.
……………………………………………………………………………………

……………………………………………………………………………………

6.7 SUMMARY

Like other languages, C uses arrays as a way of describing a collection of variables
with identical properties. The group has a single name for all its members, with the
individual member being selected by an index. We have learnt in this unit, the basic
purpose of using an array in the program, declaration of array and assigning values to
the arrays. All elements of the arrays are stored in the consecutive memory locations.
Without exception, all arrays in C are indexed from 0 up to one less than the bound
given in the declaration. This is very puzzling for a beginner. Watch out for it in the
examples provided in this unit. One important point about array declarations is that
they don't permit the use of varying subscripts. The numbers given must be constant
expressions which can be evaluated at compile time, not run time. As with other
variables, global and static array elements are initialized to 0 by default, and automatic
array elements are filled with garbage values. In C, an array of type char is used to
represent a character string, the end of which is marked by a byte set to 0 (also known
as a NULL character).

37

Whenever the arrays are passed to function their starting address is used to access rest
of the elements. This is called – Call by reference. Whatever changes are made to the

Control Statements,
Arrays and
Functions

elements of an array in the function, they are also made available in the calling part.
The formal argument contains no size specification except for the rightmost
dimension. Arrays and pointers are closely linked in C. Multi-dimensional arrays are
simply arrays of arrays. To use arrays effectively it is a good idea to know how to use
pointers with them. More about the pointers can be learnt from Unit -10 (Block -3).

6.8 SOLUTIONS / ANSWERS

Check Your Progress 1

1. If you use a subscript that is out of bounds of the array declaration, the program
will probably compile and even run. However, the results of such a mistake can
be unpredictable. This can be a difficult error to find once it starts causing
problems. So, make sure you’re careful when initializing and accessing the
array elements.

2.

a) 6
b) 5
c) 5

3. This mistake doesn’t produce a compiler error. If you don’t initialize an array,

there can be any value in the array elements. You might get unpredictable
results. You should always initialize the variables and the arrays so that you
know their content.

4. Each element of an array must be initialized. The safest way for a beginner is to

initialize an array, either with a declaration, as shown in this chapter, or with a
for statement. There are other ways to initialize an array, but they are beyond
the scope of this Unit.

5. Use a for loop to total the contents of an integer array which has five elements.

Store the result in an integer called total.

for (loop = 0, total = 0; loop < 5; loop++)
total = total + numbers[loop];

Check Your Progress 2

1. Call by reference.

2. It is possible to pass the whole array to a function. In this case, only the address
of the array will be passed. When this happens, the function can change the
value of the elements in the array.

3. Two common statistical applications that use arrays are:

• Frequency distributions: A frequency array show the number of elements
with an identical value found in a series of numbers. For example, suppose
we have taken a sample of 50 values ranging from 0 to 10. We want to
know how many of the values are 0, how many are 1, how many are 2 and
so forth up to 10. Using the arrays we can solve the problem easily .
Histogram is a pictorial representation of the frequency array. Instead of
printing the values of the elements to show the frequency of each number,
we print a histogram in the form of a bar chart.

• Random Number Permutations: It is a set of random numbers in which
no numbers are repeated. For example, given a random number permutation
of 5 numbers, the values of 0 to 5 would all be included with no duplicates.

 38

39

Arrays Check Your Progress 3

1. float balances[3][5];

2. for(row = 0, total = 0; row < 3; row++)
 for(column = 0; column < 5; column++)

total = total + balances[row][column];

3. for(loop = 0; loop < 5; loop++)
scanf ("%c", &words[loop]);

6.9 FURTHER READINGS

1. The C Programming Language, Brain W. Kernighan, Dennis M. Ritchie, PHI.
2. C, The Complete Reference, Fourth Edition, Herbert Schildt, TMGH, 2002.

3. Computer Science – A Structured Programming Approach Using C, Behrouz A.
Forouzan, Richard F. Gilberg, Thomas Learning, Second edition, 2001.

4. Programming with ANSI and TURBO C, Ashok N. Kamthane, Pearson
Education, 2002.

	data-type array_name [constant-size];
	Three-dimensional arrays (and higher) are stored in the same way as the two-dimensional ones. They are kept in computer memory as a linear sequence of variables, and the last index is always the one that varies fastest (then the next-to-last, and so o

