

Structures, Pointers
and File Handling UNIT 11 THE C PREPROCESSOR

Structure

11.0 Introduction
11.1 Objectives
11.2 # define to Implement Constants
11.3 # define to Create Functional Macros
11.4 Reading from Other Files using # include
11.5 Conditional Selection of Code using #ifdef

11.5.1 Using #ifdef for different computer types
11.5.2 Using #ifdef to temporarily remove program statements

11.6 Other Preprocessor Commands
11.7 Predefined Names Defined by Preprocessor
11.8 Macros Vs Functions
11.9 Summary
11.10 Solutions / Answers
11.11 Further Readings

11.0 INTRODUCTION
Theoretically, the “preprocessor” is a translation phase that is applied to the source
code before the compiler gets its hands on it. The C Preprocessor is not part of the
compiler, but is a separate step in the compilation process. C Preprocessor is just a
text substitution tool, which filters your source code before it is compiled. The
preprocessor more or less provides its own language, which can be a very powerful
tool for the programmer. All preprocessor directives or commands begin with the
symbol #.

The preprocessor makes programs easier to develop, read and modify. The
preprocessor makes C code portable between different machine architectures &
customizes the language.

The preprocessor performs textual substitutions on your source code in three ways:

File inclusion: Inserting the contents of another file into your source file, as if you
had typed it all in there.
Macro substitution: Replacing instances of one piece of text with another.
Conditional compilation: Arranging that, depending on various circumstances,
certain parts of your source code are seen or not seen by the compiler at all.

The next three sections will introduce these three preprocessing functions. The syntax
of the preprocessor is different from the syntax of the rest of C program in several
respects. The C preprocessor is not restricted to use with C programs, and
programmers who use other languages may also find it useful. However, it is tuned to
recognize features of the C language like comments and strings.

11.1 OBJECTIVES

After going through this unit, you will be able to:

• define, declare preprocessor directives;
• discuss various preprocessing directives, for example file inclusion, macro

substitution, and conditional compilation; and

42

• discuss various syntaxes of preprocessor directives and their applications.

The C Preprocessor

11.2 # define TO IMPLEMENT CONSTANTS

The preprocessor allows us to customize the language. For example to replace { and }
of C language to begin and end as block-statement delimiters (as like the case in
PASCAL) we can achieve this by writing:

define begin {
define end }

During compilation all occurrences of begin and end get replaced by corresponding
{ and }. So the subsequent C compilation stage does not know any difference!

#define is used to define constants.

The syntax is as follows:

define <literal> <replacement-value>

literal is identifier which is replaced with replacement-value in the program.

For Example,

#define MAXSIZE 256
#define PI 3.142857

The C preprocessor simply searches through the C code before it is compiled and
replaces every instance of MAXSIZE with 256.

define FALSE 0
define TRUE !FALSE

The literal TRUE is substituted by !FALSE and FALSE is substituted by the value 0 at
every occurrence, before compilation of the program. Since the values of the literal
are constant throughout the program, they are called as constant.

The syntax of above # define can be rewritten as:

define <constant-name> <replacement-value>

Let us consider some examples,

define M 5
define SUBJECTS 6
define PI 3.142857
define COUNTRY INDIA

Note that no semicolon (;) need to be placed as the delimiter at the end of a # define
line. This is just one of the ways that the syntax of the preprocessor is different from
the rest of C statements (commands). If you unintentionally place the semicolon at the
end as below:

#define MAXLINE 100; /* WRONG */

and if you declare as shown below in the declaration section,

char line[MAXLINE];

43

Structures, Pointers
and File Handling

the preprocessor will expand it to:

char line[100;]; /* WRONG */

which gives you the syntax error. This shows that the preprocessor doesn’t know
much of anything about the syntax of C.

11.3 # define TO CREATE FUNCTIONAL MACROS

Macros are inline code, which are substituted at compile time. The definition of a
macro is that which accepts an argument when referenced. Let us consider an example
as shown below:

Example 11.1

Write a program to find the square of a given number using macro.

/* Program to find the square of a number using marco*/
#include <stdio.h>
define SQUARE(x) (x*x)
main()
 {
 int v,y;
 printf("Enter any number to find its square: ");
 scanf("%d", &v);
 y = SQUARE(v);
 printf("\nThe square of %d is %d", v, y);
}

OUTPUT

Enter any number to find its square: 10
The square of 10 is 100

In this case, v is equated with x in the macro definition of square, so the variable y is
assigned the square of v. The brackets in the macro definition of square are necessary
for correct evaluation. The expansion of the macro becomes:

y =(v * v);

Macros can make long, ungainly pieces of code into short words. Macros can also
accept parameters and return values. Macros that do so are called macro functions. To
create a macro, simply define a macro with a parameter that has whatever name you
like, such as my_val. For example, one macro defined in the standard libraries is
“abs”, which returns the absolute value of its parameter. Let us define our own version
of ABS as shown below. Note that we are defining it in upper case not only to avoid
conflicting with the existing “abs”.

#define ABS(my_val) ((my_val) < 0) ? -(my_val) : (my_val)

#define can also be given arguments which are used in its replacement. The
definitions are then called macros. Macros work rather like functions, but with the
following minor differences:

• Since macros are implemented as a textual substitution, by this the performance of
program improves compared to functions.

44

• Recursive macros are generally not a good idea.

The C Preprocessor • Macros don’t care about the type of their arguments. Hence macros are a good

choice where we want to operate on reals, integers or a mixture of the two.
Programmers sometimes call such type flexibility polymorphism.

• Macros are generally fairly small.

Let us look more illustrative examples to understand the macros concept.

Example 11.2

Write a program to declare constants and macro functions using #define.

/* Program to illustrate the macros */
#include <stdio.h>
#include <string.h>
#define STR1 "A macro definition!\n"
#define STR2 "must be all on one line!\n"
#define EXPR1 1+2+3
#define EXPR2 EXPR1+5
#define ABS(x) (((x) < 0) ? – (x):(x))
#define MAX(p,q) ((p < q) ? (q):(p))
#define BIGGEST(p,q,r) (MAX(p, q) < r)?(r):(MAX(p, q))
main()
{
 printf(STR1);
 printf(STR2);
 printf("Largest number among %d, %d and %d is %d\n",EXPR1, EXPR2, ABS (–3),
 BIGGEST(1,2,3));
}

OUTPUT

A macro definition
must be all on one line!
Largest number among 6, 11 and 3 is 3

The macro STR1 is replaced with “A macro definition \n” in the first printf()
function. The macro STR2 is replaced with “must be all on one line! \n” in the
second printf function. The macro EXPR1 is replaced with 1+2+3 in third printf
statement. The macro EXPR2 is replaced with EXPR1 +5 in fourth printf statement.
The macro ABS(–3) is replaced with (– 3<0) ? – (– 3) : 3. And evaluation 3 is
replaced. The largest among the three numbers is diplayed.

Example 11.3

Write a program to find out square and cube of any given number using macros.

/* Program to find the square and cube of any given number using macro directive */
include<stdio.h>
define sqr(x) (x * x)
define cub(x) (sqr(x) * x)
main()
{
 int num;
 printf(“Enter a number: ”);
 scanf(“%d”, &num);
 printf(“ \n Square of the number is %d”, sqr(num));
 printf(“ \n Cube of the number is %d\n”, cub(num));

45

}

Structures, Pointers
and File Handling

OUTPUT

Enter a number: 5
Square of the number is 25
Cube of the number is 125

Note: Multi-line macros can be defined by placing a backward slash (\) at end of
each line except the last line. This feature permits a single macro (i.e. a single
identifier) to represent a compound statement.

Example 11.4

Write a macro to display the string COBOL in the following fashion

C
CO
COB
COBO
COBOL
COBOL
COBO
COB
CO
C

/* Program to display the string as given in the problem*/
include<stdio.h>
define LOOP for(x=0; x<5; x++) \
 { y=x+1; \
 printf(“%-5.*s\n”, y, string); } \
 for(x=4; x>=0; x--) \
 { y=x+1; \
 printf(“%-5.*s \n”, y, string); }

main()
{
 int x, y;
 static char string[] = “COBOL”;
 printf(“\n”);

LOOP;
}

When the above program is executed the reference to macro (loop) is replaced by the
set of statements contained within the macro definition.

OUTPUT

C
CO
COB
COBO
COBOL
COBOL
COBO
COB
CO

46

C

The C Preprocessor

Recollect that CALL BY VALUE Vs CALL BY REFERENCE given in the previous
uint. By CALL BY VALUE, the swapping was not taking place, because the visibility
of the variables was restricted to with in the function in the case of local variables.
You can resolve this by using a macro. Here is swap in action when using a macro:

#define swap(x, y) {int tmp = x; x = y; y = tmp; }

Now we have swapping code that works. Why does this work? It is because the CPP
just simply replaces text. Wherever swap is called, the CPP will replace the macro call
with the macro meaning, (defined text).

Caution in using macros

You should be very careful in using Macros. In particular the textual substitution
means that arithmetic expressions are liable to be corrupted by the order of evaluation
rules (precedence rules). Here is an example of a macro, which won’t work.

#define DOUBLE(n) n + n

Now if we have a statement,

z = DOUBLE(p) * q;

This will be expanded to

z = p + p * q;

And since * has a higher priority than +, the compiler will treat it as.

z = p + (p * q);

The problem can be solved using a more robust definition of DOUBLE

#define DOUBLE(n) (n + n)

Here, the braces around the definition force the expression to be evaluated before any
surrounding operators are applied. This should make the macro more reliable.

Check Your Progress 1

1. Write a macro to evaluate the formula f(x) = x*x + 2*x + 4.

……………………………………………………………………………..……………

…………………………………………………………………………………………..

2. Define a preprocessor macro swap(t, x, y) that will swap two arguments x and y of
a given type t.

…………………………………………………………………………………………

…………………………………………………………………………………………

3. Define a macro called AREA, which will calculate the area of a circle in terms of
radius.

…………………………………………………………………………………………

…………………………………………………………………………………………

47

Structures, Pointers
and File Handling

4. Define a macro called CIRCUMFERENCE, which will calculate the circumference
 of a circle in terms of radius.
…………………………………………………………………………………………

…………………………………………………………………………………………

5. Define a macro to display multiplication table.

…………………………………………………………………………………………

…………………………………………………………………………………………

6. Define a macro to find sum of n numbers.

…………………………………………………………………………………………

…………………………………………………………………………………………

………………………………………………………………………………………….

11.4 READING FROM OTHER FILES USING # include
The preprocessor directive #include is an instruction to read in the entire contents of
another file at that point. This is generally used to read in header files for library
functions. Header files contain details of functions and types used within the library.
They must be included before the program can make use of the library functions. The
syntax is as follows:

#include <filename.h>

or

#include “filename.h”

The above instruction causes the contents of the file “filename.h” to be read, parsed,
and compiled at that point. The difference between the suing of # and “ ” is that,
where the preprocessor searches for the filename.h. For the files enclosed in < > (less
than and greater than symbols) the search will be done in standard directories (include
directory) where the libraries are stored. And in case of files enclosed in “ ” (double
quotes) search will be done in “current directory” or the directory containing the
source file. Therefore, “ ” is normally used for header files you’ve written, and # is
normally used for headers which are provided for you (which someone else has
written).

Library header file names are enclosed in angle brackets, < >. These tell the
preprocessor to look for the header file in the standard location for library definitions.
This is /usr/include for most UNIX systems. And c:/tc/include for turbo compilers
on DOS / WINDOWS based systems.

Use of #include for the programmer in multi-file programs, where certain information
is required at the beginning of each program file. This can be put into a file by name
“globals.h” and included in each program file by the following line:

#include "globals.h"

If we want to make use of inbuilt functions related to input and output operations, no
need to write the prototype and definition of the functions. We can simply include the
file by writing:

48

#include <stdio.h>

The C Preprocessor

and call the functions by the function calls. The standard header file stdio.h is a
collection of function prototype (declarations) and definition related to input and
output operations.

The extension “.h”', simply stands for “header” and reflects the fact that #include
directives usually sit at the top (head) of your source files. “.h” extension is not
compulsory – you can name your own header files anything you wish to, but .h is
traditional, and is recommended.

Placing common declarations and definitions into header files means that if they
always change, they only have to be changed in one place, which is a much more
feasible system.

What should you put in header files?
• External declarations of global variables and functions.
• Structure definitions.
• Typedef declarations.

However, there are a few things not to put in header files:
• Defining instances of global variables. If you put these in a header file, and

include the header file in more than one source file, the variable will end up
multiply defined.

• Function bodies (which are also defining instances), may not be put in header files.
Since these headers may end you up with multiple copies of the function and
hence “multiply defined” errors. People sometimes put commonly-used functions
in header files and then use #include to bring them (once) into each program
where they use that function, or use #include to bring together the several source
files making up a program, but both of these are not good practice. It’s much
better to learn how to use your compiler or linker to combine together separately-
compiled object files.

11.5 CONDITIONAL SELECTION OF CODE USING # ifdef

The preprocessor has a conditional statement similar to C’s if-else. It can be used to
selectively include statements in a program. The commands for conditional selection
are; #ifdef, #else and #endif.

#ifdef
The syntax is as follows:

#ifdef IDENTIFIER_NAME
{
 statements;
 }
This will accept a name as an argument, and returns true if the name has a current
definition. The name may be defined using a # define, the -d option of the compiler, or
certain names which are automatically defined by the UNIX environment. If the
identifier is defined then the statements below #ifdef will be executed

#else
The syntax is as follows:

#else
{

49

statements;

Structures, Pointers
and File Handling

}

#else is optional and ends the block started with #ifdef. It is used to create a 2 way
optional selection. If the identifier is not defined then the statements below #else will
be executed.

#endif

Ends the block started by #ifdef or #else.
Where the #ifdef is true, statements between it and a following #else or #endif are
included in the program. Where it is false, and there is a following #else, statements
between the #else and the following #endif are included. Let us look into the
illustrative example given below to get an idea.

Example 11.5

Define a macro to find maximum of 3 or 2 numbers using #ifdef , #else

/* Program to find maximum of 2 numbers using #ifdef*/

#include<stdio.h>
#define TWO
main()
{
int a, b, c;
clrscr();

#ifdef TWO
 {
 printf("\n Enter two numbers: \n");
 scanf("%d %d", &a,&b);
 if(a>b)
 printf("\n Maximum of two numbers is %d", a);
 else
 printf("\n Maximum is of two numbers is %d", b);
 }

#endif
} /* end of main*/

OUTPUT

Enter two numbers:
33
22
Maximum of two numbers is 33

Explanation

The above program demonstrate preprocessor derivative #ifdef. By using #ifdef
TWO has been defined. The program finds out the maximum of two numbers.

11.5.1 Using #ifdef for Different Computer Types

50

Conditional selection is rarely performed using #define values. This is often used
where two different computer types implement a feature in different ways. It allows
the programmer to produce a program, which will run on either type.

The C Preprocessor

A simple application using machine dependent values is illustrated below.

#include <stdio.h>
main()
{
#ifdef HP
{
 printf("This is a HP system \n");
 …………………….
 ……………………. /* code for HP systems*/
 }
 #endif

#ifdef SUN
{
 printf("This is a SUN system \n");
 ……………………. /* code for SUN Systems
}
#endif
}

If we want the program to run on HP systems, we include the directive
#define HP at the top of the program.

If we want the program to run on SUN systems, we include the directive
#define SUN at the top of the program.

Since all you’re using the macro HP or SUN to control the #ifdef, you don’t need to
give it any replacement text at all. Any definition for a macro, even if the replacement
text is empty, causes an #ifdef to succeed.

11.5.2 Using #ifdef to Temporarily Remove Program
 Statements

#ifdef also provides a useful means of temporarily “blanking out” lines of a program.
The lines in the program are preceded by #ifdef NEVER and followed by #endif. Of
course, you should ensure that the name NEVER isn’t defined anywhere.

#include <stdio.h>
main()
{
…………….
#ifdef NEVER
{
 …………………….
 ……………………. /* code is skipped */
 #endif
}

11.6 OTHER PREPROCESSOR COMMANDS

Other preprocessor commands are:

• #ifndef - If this macro is not defined

51

• #if - Test if a compile time condition is true

Structures, Pointers
and File Handling

• #else - The alternative for #if. This is part of an #if preprocessor
 statement and works in the same way with #if that the regular

C else does with the regular if.
• #elif - enables us to establish an “if…else…if ..” sequence for

testing multiple conditions.

Example 11.6

#if processor == intel
#define FILE “intel.h”
#elif processor == amd
#define FILE “amd.h”
#if processor == motrola
#define FILE “motrola.h”
#endif
#include FILE

• # - Stringizing operator, to be used in the definition of macro. This operator

allows a formal parameter within macro definition to be converted to a string.

Example 11.7

#define multiply (p*q) printf(#pq “ = %f”, pq)
main()
{
 ………..
 multiply(m*n);
}

The preprocessor converts the line multiply(m*n) into printf(“m*n” “ = %f”, m*n);
And then into printf(“m*n = %f”, m*n);

- Token merge, creates a single token from two adjacent ones within a macro
definition.

Example 11.8

#define merge(s1,s2) s1## s2
main()
{
 …………..
 printf(“%f”, merge(total, sales);
}

The preprocessor transforms the statement merge(total, sales) into printf(“%f”,
totalsales);

#error - text of error message -- generates an appropriate compiler error message.

Example 11.9

#ifdef OS_MSDOS
#include <msdos.h>

 #elifdef OS_UNIX
 #include ``default.h''

52

 #else

The C Preprocessor #error Wrong OS!!

#endif

line
#line number "string" – informs the preprocessor that the number is the next number
of line of input. "string" is optional and names the next line of input. This is most
often used with programs that translate other languages to C. For example, error
messages produced by the C compiler can reference the file name and line numbers of
the original source files instead of the intermediate C (translated) source files.

#pragma

It is used to turn on or off certain features. Pragmas vary from compiler to compiler.
Pragmas available with Microsoft C compilers deals with formatting source listing
and placing comments in the object file generated by the compiler. Pragmas
available with Turbo C compilers allows to write assembly language statements in C
program.

A control line of the form

#pragma token-sequence

This causes the processor to perform an implementation-dependent action. An
unrecognized pragma is ignored.

Other preprocessor directives are # - Stringizing operator allows a formal parameter
within macro definition to be converted to a string. ## - Token merge, creates a single
token from two adjacent ones within a macro definition. #error - generates an
appropriate compiler error message.

Example 11.10

Write a macro to demonstrate #define, #if, #else preprocessor commands.

/* The following code displays 35 to the screen. */

#include <stdio.h>
#define CHOICE 100
int my_int = 0;
#if (CHOICE == 100)
 void set_my_int()
 { my_int = 35; }
#else
 void set_my_int()
 {
 my_int = 27;
 }
#endif
main ()
{
 set_my_int();
 printf("%d\n", my_int);
}

OUTPUT

53

35

Structures, Pointers
and File Handling

The my_int is initialized to zero and CHOICE is defined as 100. #if derivative checks
whether CHOICE is equal to 100. Since CHOICE is defined as 100, void set_my_int
is called and int is set 35. And the same is displayed on to the screen.

Example 11.11

Write a macro to demonstrate #define, #if, #else preprocessor commands.

/* The following code displays 27 on the screen */

#include <stdio.h>
#define CHOICE 100
int my_int = 0;
#undef CHOICE
#ifdef CHOICE
 void set_my_int()
 {
 my_int = 35;
 }
#else
 void set_my_int()
 {
 my_int = 27;
 }
#endif

main ()
{
 set_my_int();
 printf("%d\n", my_int);
}

OUTPUT

27

The my_int is initialized to 0 and CHOICE is defined as 100. #undef is used to
undefine CHOICE. #else is invoked , void set_my_int is called and int is set 27. And
the same is displayed on to the screen.

11.7 PREDEFINED NAMES DEFINED BY
 PREPROCESSOR

These are identifiers defined by the preprocessor, and cannot be undefined or
redefined. They are:

LINE an integer constant containing the current source line number.

FILE a string containing the name of the file being complied.

DATE a string literal containing the date of compilation, in the form “mm-dd-

 yyyy”.

TIME a string literal containing the time of compilation, in the form “hh:mm:ss”.

STDC the constant 1. This identifier is defined to be 1 only in the implementations

conforming to the ANSI standard.

54

The C Preprocessor

11.8 MACROS Vs FUNCTIONS

Till now we have discussed about macros. Any computations that can be done on
macros can also be done on functions. But there is a difference in implementations
and in some cases it will be appropriate to use macros than function and vice versa.
We will see the difference between a macro and a function now.

Macros Functions
Macro calls are replaced with macro
expansions (meaning).

In function call, the control is passed to a
function definition along with arguments,
and definition is processed and value may
be returned to call

Macros run programs faster but
increase the program size.

Functions make program size smaller and
compact.

If macro is called 100 numbers of
times, the size of the program will
increase.

If function is called 100 numbers of times,
the program size will not increase.

It is better to use Macros, when the
definition is very small in size.

It is better to use functions, when the
definition is bigger in size.

Check Your Progress 2

1. Write an instruction to the preprocessor to include the math library math.h.

…………………………………………………………………………………………

…………………………………………………………………………………………

2. Write a macro to add user defined header file by name madan.h to your program.

…………………………………………………………………………………………

…………………………………………………………………………………………

3. What will be the output of the following program?
#include<stdio.h>
main()
{
 float m=7;
 #ifdef DEF
 i*=i;
 #else
 printf("\n%f", m);
 #endif }

…………………………………………………………………………………………

…………………………………………………………………………………………

4. Write a macro to find out whether the given character is upper case or not.

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………..

55

Structures, Pointers
and File Handling 11.9 SUMMARY

The preprocessor makes programs easier to develop and modify. The preprocessor
makes C code more portable between different machine architectures and customize
the language. The C Preprocessor is not part of the compiler, but is a separate step in
the compilation process. All preprocessor lines begin with #. C Preprocessor is just a
text substitution tool on your source code in three ways: File inclusion, Macro
substitution, and Conditional compilation.

File inclusion - inserts the contents of another file into your source file.
Macro Substitution - replaces instances of one piece of text with another.
Conditional Compilation - arranges source code depending on various circumstances.

11.10 SOLUTIONS / ANSWERS

Check Your Progress 1

1. # include<stdio.h>

define f(x) x*x + 2 * x + 4
main()
{
int num;
printf("enter value x: ");
scanf("%d",&num);
printf("\nvalue of f(num) is %d", f(num));
}

2. # include<stdio.h>
 # define swap(t, x, y) { t tmp = x; x = y; y = tmp; }
 main()
 {
 int a, b;
 float p, q;
 printf("enter integer values for a, b: ");
 scanf("%d %d", &a, &b);
 printf("\n Enter float values for p, q: ");
 scanf("%f %f", &p, &q);
 swap(int, a, b);
 printf(" \n After swap the values of a and b are %d %d", a, b);
 swap(float, p, q);
 printf("\n After swap the values of p and q are %f %f", p, q);
 }

3. # include<stdio.h>

define AREA(radius) 3.1415 * radius * radius
 main()
 {
 int radius;

printf(“Enter value of radius: ”);
scanf(“%d ”, &radius);
printf(“\nArea is %d”, AREA(radius));

 }

4. # include<stdio.h>
 # define CIRCUMFERENCE(radius) 2 * 3.1415 * radius

56

 main()

57

The C Preprocessor {
 int radius;

printf(“Enter value for radius ”);
scanf(“%d ”, &radius);
printf(“Circumference is %d”, CIRCUMFERENCE(radius));

 }

5. # include<stdio.h>
 # define MUL_TABLE(num) for(n=1;n<=10;n++) \
 printf("\n%d*%d=%d",num,n,num*n)
 main()
 {
 int number; int n;
 printf("enter number");
 scanf("%d",&number);
 MUL_TABLE(number);
 }

6. # include<stdio.h>
 # define SUM(n) ((n * (n+1)) / 2)
 main()
 {
 int number;
 printf("enter number");
 scanf("%d", &number);
 printf("\n sum of n numbers %d", sum(number)); }

Check Your Progress 2

1. # include <math.h>

2. #include "madan.h"

3. 7

4. # include<stdio.h>
 # define isupper(c) (c>=65 && c<=90)
 main()
 {
 char c;
 printf("Enter character:");
 scanf("%c",&c);
 if(isupper(c))
 printf("\nUpper case");
 else
 printf("\nNo it is not an upper case character");
 }

11.11 FURTHER READINGS
1. The C programming language, Brian W. Kernighan & Dennis Ritchie, Pearson

Education, 2002.
2. Programming with ANSI and Turbo C, Ashok N. Kamthane, Pearson Education,

2002.
3. Computer Programming in C, Raja Raman. V, PHI, 2002.

	UNIT 11THE C PREPROCESSOR

