UNIT 3 ASSEMBLY LANGUAGE
PROGRAMMING (PART - 1)

Structure Page No.
3.0 Introduction 57
3.1 Objectives 57
3.2 Simple Assembly Programs 57

3.2.1 Data Transfer
322 Simple Arithmetic Application
323 Application Using Shift Operations
324 Larger of the Two Numbers
3.3 Programming With Loops and Comparisons 63
3.3.1 Simple Program Loops
3.3.2 Find the Largest and the Smallest Array Values
333 Character Coded Data
334 Code Conversion
3.4 Programming for Arithmetic and String Operations 69
3.4.1 String Processing '
342 Some More Arithmetic Problems
3.5 Summary 75
3.6 Solutions/ Answers 75

3.0 INTRODUCTION

After discussing a few essential directives, program developmental tools and simple
programs, let us discuss more about assembly language programs. In this unit, we will
‘start our discussions with simple assembly programs, which fulfil simple tasks such as
data transfer, arithmetic operations, and shift operations. A key example here will be
about finding the larger of two numbers. Thereafter, we will discuss more complex
programs showing how loops and various comparisons are used to implement tasks
like code conversion, coding characters, finding largest in array etc. Finally, we will
discuss more complex arithmetic and string operations. You must refer to further
readings for more discussions on these programming concepts.

3.1 OBJECTIVES

After going through this unit, you should be able to:

write assembly programs with simple arithmetic logical and shift operations;
implement loops;

use comparisons for implementing various comparison functions;

write simple assembly programs for code conversion; and

write simple assembly programs for implementing arrays.

3.2 SIMPLE ASSEMBLY PROGRAMS

As part of this unit, we will discuss writing assembly language programs. We shall
_ start with very simple programs, and later graduate to more complex ones,

- 3.2.1 Data Transfer

Two most basic data transfer instructions in the 8086 microprocessor are MOV and
XCHG. Let us give examples of the use of these instructions.

57

Assembly Language
Programming

58

; Program 1: This program shows the difference of MOV and XCHG instructions:

DATA SEGMENT
YAL DB 5678H ; initialize variable VAL
DATA ENDS

CODE SEGMENT
ASSUME CS: CODE, DS: DATA

MAINP: MOV AX, 1234H ; AH=12 & AL=34
XCHG - AH, AL ; AH=34 & AL=12
MOV AX, 1234H ; AH=12 & AL=34
MOV BX, VAL ; BH=56 & BL=78
XCHG AX, BX ; AX=5078 & BX=1234
XCHG AH, BL ; AH=34, AL=78, BH=12, & BL=56
MOV AX,4C00H ; Halt using INT 21h
INT 21H ‘

CODE ENDS

END MAINP

Discussion

Just keep on changing values as desired in the program.

; Program 2: Program for interchanging the values of two Memory locations
; input: Two memory variables of same size: 8-bit for this program

DATA SEGMENT '
VALUE! DB 0Ah ; Variables
VALUE2 DB 14h

DATA ENDS

CODE SEGMENT
ASSUME CS:CODE, DS:DATA
MOV AX, DATA ; Initialise data segments
MOV DS, AX ; using AX
MOV AL, VALUEI] ; Load Valuel into AL
XCHG VALUE2, AL ; exchange AL with Value2.
MOV VALUE] AL ; Store A1 in Valuel
INT 21h ; Return to Operating system
CODE ENDS

END »

Discussion:

The question is why cannot we simply use XCHG instruction with two memory
variables as operand? To answer the question let us look into some of constraints for
the MOV & XCHG instructions:

The MOV instruction has the following constraints and operands:

CS and IP may never be destination operands in MOV,

Immediate data value and memory variables may not be moved to segment
registers; ‘ ‘

The source and the destination operands should be of the same size;

Both the operands cannat he memagry logcations;

If the source is immediate data, it must not exceed 255 (FFh) for an 8-bit
destination or 65,535 (FFFFh) for a 16-bit destination. '

The statement MOV AL, VALUEI, copies the VALUEI that is 0Ah in the AL
register: .

AX:00 0A < 0A (VALUEID)
AH AL 14 (VALUEZ2)

The instruction, XCHG AL, VALUE2? ; exchanges the value of AL with VALUE2

Now AL and VALUE2 contains and values as under:

AX: 00 14 ¢ l 0A (VALUELI)
0A (VALUE2)
The statement, MOV VALUEI, AL ;, now puts the value of AL to VALUE].

Thus the desired exchange is complete

AX: 00 14 » 14 (VALUED)
0A (VALUE2)

Other statcirents in the above program have already been discussed in the preceding
units.

%

3.2.2 Simple Arithmetic Application
Let us discuss an example that uses sinple arithmetic:

; Program 3: Fiud the average of two values stored in
; memory locations named FIRST and SECOND
; and puts the result in the memory location AVGE.

; Input : Two memory variables stored in memory locations FIRST and SECOND

; REGISTERS ; Uses DS, CS, AX, BL

; PORTS ; None used

DATA SEGMENT
FIRST DB 90h ; FIRST number, 90k is a zample value
SECOND DB 78h ; SECOND number, 78 is a sample value
AVGE DB ? ; Store average here

DATA ENDS -
CODE SEGMENT
ASSUME CS:CODE, DS:DATA

START: MOV AX,DATA ; Initialise data segment, i.e. set
MOV DS, AX ; Register DS to point to Data Segment
MOV AL, FIRST ; Get first number
ADD AL, SECOND ; Add second to it
MOV AH, 00h ; Clear all of AH register
ADC AH, 00h ; Put carry in LSB of AH
MOV BL, 02h ; Load divisor in BL register
DIV BL ; Divide AX by BL. Quotient in AL,
; and remainder in AH
MOV AVGE, AL ; Copy result to memory
CODE ENDS
END START
Discussion:

An add instruction cannot add two memory locations directly, so we moved a single
value in AL first and added the second value to it.

" Please note, on adding the two values, there is a possibility of carry bit. (The values
here are being treated as unsigned binary numbers). Now the problem is how to put

Assembly Language
Programming
(Part 1)

59

Assembly Language
Programming

60

fhc carry bit into the AH register such that the AX(AH:AL) reflects the added value.
This is done using ADC instruction.

The ADC AH,00h instruction will add the immediate number 00h to the contents of
the carry flag and the contents of the AH register. The result will be left in the AH
register. Since we had cleared AH to all zeros, before the add, we really are adding
00h + 00h + CF. The result of all this is that the carry flag bit is put in the AH register,
which was desired by us.

Finally, to get the average, we divide the sum given in AX by 2. A more general
program would require positive and negative numbers. After the division, the 8-bit
guotient will be left in the AL register, ‘which can then be copied into the memory
location named AVGE.

3.23 Application Using Shift Operations

Shift and rotate instructions are useful even for multiplication and division. These
operations are not generally available in h1gh-1eve1 languages, so assembly language
may be an absolute necgssny in certain types of apphcatlons

i Program 4: Convert the ASCII code to its BCD equivalent. This can be done by
simply replaemg the bits in the upper four bits of the byte by four zeros. For example
the ASCII ‘1’ is 32h = 0011 0010B. By making the upper four bits as 0. we get 0000
0010 which is 2 in BCD. The number obtained is called unpacked BCD number. The
upper four bits of this byte is zero. So the upper four bits can be used to store another
BCD digit. The byte thus obtained is called packed BCD number. For example, an
unpacked BCD number 59 is 00000101 OOOOIOOl that is, 05 09. The packed BCD
will be 0101 1001, that is 59.

The algorithm to convert two ASCII digits to packed BCD can be stated asi-

Convert first ASCII digit to unpacked BCD.
Convert the second ASCII digit to unpacked BCD.

Decimal ASCIL BCD
5 00110101 00000101
9 00111001 - 00001001

Move first BCD to upper four positions in byte.

[0101 0000 Using Rotate Instructions]

Pack two BCD bits in one byte.

0101 0000
0000 1001
Pack | 0101 1001 Using OR

;The assembly language program for the above can Bé written in the following
manner.

; ABSTRACT Program produces a packed BCD byte from 2 ASCII
‘ ; encoded digits. Assume the number as 59,

; The first ASCII digit (5) is loaded in BL.
; The second ASCII digit (9) is loaded in AL.
; The result (packed BCD) is left in AL.

S
1

; REGISTERS ; Uses CS, AL, BL, CL

; PORTS ; None used -

CODE SEGMENT
ASSUME CS8:CODE

START: - Mov BL, 'S ; Load first ASCII digit in BL
MoV AL, O ; Load second ASCII digit in AL
AND BL, 0Fh ;Mask upper 4 bits of first digit
AND AL, OFh ;Mask upper 4 bits of second digit
MOV CL, 04h ;Load CL for 4 rotates
ROL BL, CL ; Rotate BL 4 bit positions
OR - AL, BL ; Combine nibbles, result in AL contains 59

; &s packed BCD

CODE ENDS
END START

Discussion:

8086 does not have any instruction to swap upper and lower four bits in a byte,
therefote we need to use the rotate instructions that too by 4 times. Out of the two
rotate instructions, ROL and RCL, we have chosen ROL, as it rotates the byte left by
one ot more positiotis, ot the other hand RCL moves the MSB into the carry flag and
brings the otiginal carry flag into the LSB position, which is not what we want.

Let us now look at a program that uses RCL instructions. This will make the
difference between the instructions clear.

s Program 5: Add a byte number from one memory location to a byfe from the next
memory location and put the sum in the third memory location. Also, save the carry
flag in the least significant bit of the fourth memory location.

: This program adds 2-8-bit words in the memory locations
2 NUMI and NUM2. The result is stored in the memory

: location RESULT. The carry bit, if any will be stored as

: 0000 0001 in the location CARRY

. ABSTRACT

b
3
»

’

; ALGORITHM:

; get NUMI

; add NUM2 in it

; put sum into memory location RESULT
N rotate carry in LSB of byte

; mask off upper seven bits of byte

; _ store the result in the CARRY location.

5

- ; PORTS : None used
; PROCEDURES : None used
; REGISTERS : Uses CS, DS, AX
DATA | SEGMENT
NUMI1 DB 25h ; First number
NUM2 DB 80h ; Second number
RESULT DB ? ; Put sum here
. - CARRY DB
DATA ENDS
CODE SEGMENT

ASSUME CS:CODE, DS:DATA
START:MOV AX, DATA ; Initialise data segment

MOV DS, AX ; register using AX
MOV AL, NUM1 ;-Load the first number in AL
ADD AL, NUM2 ; Add 2™ number in AL

Assembly Language
Programming
(Part 1)

61

Assembly Language
Programming

62

MOV RESULT, AL ; Store the result
RCL AL, 01 . ; Rotate carry into LSB
AND AL, 00000001B ; Mask out all but LSB
MOV CARRY, AL ; Store the carry result
MOV AH, 4CH
INT 21H

CODE ENDS

END START

Discussion:

RCL instruction brings the carry into the least significant bit position of the AL
register. The AND instruction is used for masking higher order bits, of the carry, now
in AL

In a similar manner we can also write applications using other shift instructions.

3.2.4 Larger of the Two Numbers

How are the comparisons done in 8086 assembly language? There exists a compare
instruction CMP. However, this instruction only sets the flags on comparing two
operands (both 8 bits or 16 bits). Compare instruction just subtracts the value of
source from destination without storing the result, but setting the flag during the
process. Generally only three comparisons are more important. These are:

Result of comparison Flag(s) affected
Destination < source Carry flag=1
Destination = source Zero flag =1
Destination > source Carry =0, Zero =0

Let’s look at three examples that show how the flags are set when the m mbers are
compared. Tn example 1 BL is less than 10, so the carry flag is set. In ex imple 2, the
zero flag is set because both operands are equal. In example 3, the destitr-ation (BX) is
greater than the source, so both the zero and the carry flags are clear.

Example 1:

MOV BL, 02h
CMP BL, 10h ; Carry flag = 1

Example 2:

MOV AX, FOFOh

MOV DX, FOFOh
CMP AX,DX ; Zero flag =1
Example 3:
MOV BX, 200H
CMP BX, 0 ; Zero and Carry flags =0

In the following section we will discuss an example that uses the flags set by CMP ' '
instruction.

¥ Check Your Progress 1

State True or False with respect to 8086/8088 assembly languages.

1. Ina MOV instruction, the immediate operand value for 8-bit destination cannot

0

exceed FOh.

2. XCHG VALUEI, VALUE?2 is a valid instruction.

T

F

3. In the example given in section 3.2.2 we can change instruction DIV BL

with a shift.

4. A single instruction cannot swap the upper and lower four of a byte
register.

5. An ugpacked BCD number requires 8 bits of storage, however, two
unpacked BCD numbers can be packed in a single byte register.

6. If AL =05 and BL = 06 then CMP AL, BL instruction will clear the
zero and carry flags.

[

L
]

3.3 PROGRAMMING WITH LOOPS AND
COMPARISONS

.Let us now discuss a few examples which are slightly more advanced than what we
have been doing till now. This section deals with more practical examples using loops,

comparison and shift instructions.

- 3.3.1 Simple Program Loops
The loops in assembly can be implemented using:

¢ Unconditional jump instructions such as JMP, or
¢ . Conditional jump instructions such as JC, INC, JZ, INZ etc. and
¢ Loop instructions.

Let us consider some examples, explaining the use of conditional jumps.

Example 4:
CMP AX,BX ; compare instruction: sets flags
» JE THERE ; if equal then skip the ADD instruction
ADD AX, 02 ;add 02 to AX
THERE: MOV~ CL, 07 ; load 07 to CL

Inn the example above the control of the program will directly transfer to the label
THERE if the value stores in AX register is equal to that of the register BX. The same

example can be rewritten in the following manner, using different jumps.

Example 5:
CMP AX, BX ; compare instruction: sets flags
JINE FIX ; if not equal do addition
JMP THERE ; if equal skip next instruction
FIX: ADD AX, 02 ; add 02 to AX

Assembly Langunge
Programming
(Part 1)

63

Assembly Language

Programming

THERE: MOV CL, 07

The above code is not efficient, but suggest that there are many ways through which a
conditional jump can be implemented. Select the most optimum way.

Example 6:

CMP DX, 00 ; checks if DX is zero.

JE Labell ; if yes, jump to Labell i.e. if ZF=1
Labell:-—-- ; control comes here if DX=0
Example 7:

MOV AL, 10 ; moves 10 to AL

CMP AL, 20 ; checks if AL < 20 i.e. CF=1

JL Labl ; carry flag = 1 then jump to Labl

Labl: ---——- ; control comes here if condition is satisfied
LOOPING

;s Program 6: Assume a constant inflation factor that is added to a series of prices
; stored in the memory. The program copies the new price over the old price. It is
; assumed that price data is available in BCD form.

; The algorithm:

;Repeat

; Read a price from the array
; Add inflation factor

; Adjust result to correct BCD
; Put result back in array
Until all prices are inflated

2

; REGISTERS: Uses DS, CS, AX, BX, CX

; PORTS : Not used
ARRAYS SEGMENT
PRICE DB 36h, 55h, 27h, 42h, 38h, 41h, 29h, 3%h
ARRAYS ENDS
CODE SEGMENT
ASSUME CS:CODE, DS:ARRAYS
START: MOV AX, ARRAYS ; Initialize data segment
' MOV DS, AX ; register using AX
LEA BX, PRICES ; initialize pointer to base of array
MOV CX, 0008h ; Initialise counter to 8 as array have 8
; values. o
DO _NEXT: MOV AL, [BX] ; Copy a price to AL. BX is addressed in
; indirect mode. ‘
ADD AL, 0Ah ; Add inflation factor
DAA ; Make sure that result is BCD
MOV [BX], AL ; Copy result back to the memory
INC BX ; increment BX to make it point to next price
DEC CX ; Decrement counter register ,
INZ DO_NEXT : If not last, (last would be when CX will
' ; become 0) Loop back to DO_NEXT
MOV AH, 4CH ; Return to DOS
INT 21H
CODE ENDS
, END START

64

Discussion:

Please note the use of instruction: LEA BX,PRICES: It will load the BX register with
the offset of the array PRICES in the data segment. [BX] is an indirection through BX
and contains the value stored at that element of array. PRICES. BX is incremented to
point to the next element of the array. CX register acts as a loop counter and is
decremented by one to keep a check of the bounds of the array. Once the CX register
becomes zero, zero flag is set to 1. The JINZ instruction keeps track of the value of
CX, and the loop terminates when zero flag is 1 because JNZ does not loop back.
The same program can be written using the LOOP instruction, in such case, DEC CX
and JNZ DO_NEXT instructions are replaced by LOOP DO_NEXT instruction.
LOOP decrements the value of CX and jumps to the given label, only if CX is not
equal to zero.

Let us demonstrate the use of LOOP instruction, with the help of following program:

;,Proglram 7: This following program.prints the alphabets (A-Z)
; Register used : AX, CX, DX

CODE SEGMENT
ASSUME : CS:CODE.
MAINP: MOV CX, 1AH ;26indecimal = 1A in hexadecimal Counter.
MOV DL, 41H ; Loading DL with ASCII hexadecimal of A.
NEXTC: MOV AH, 02H ; display result character in DL
INT 21H ; DOS interrupt
INC DL ; Increment DL for next char
LOOP NEXTC ; Repeat until CX=0.(loop automatically decrements
; CS and checks whether it is zero or not)
MOV AX, 4C00H ; Exit DOS
JINT 21H ; DOS Call
CODE ENDS
END MAINP

Let us now discuss a slightly more complex looping program.

; Program 8: This program compares a pair of characters entered through keyboard.
~; Registers used: AX, BX, CX, DX

DATA SEGMENT
XX DB ?
YY DB ?
DATA ENDS
CODE SEGMENT
ASSUME CS: CODE, DS:DATA
MAINP: MOV AX, DATA . ; initialize data
4 MOV DS, AX ; segment using AX
MOV CX, 03H ; set counter to 3.
NEXTP; MOV AH, 01H ; Waiting for user to enter a char.
: INT 21H
MOV XX, AL ; store the 1* input character in XX
MOV AH, 01H ; waiting for user to enter second
INT 21H ; character.
MOV YY, AL ; store the character to YY
MOV BH, XX ; load first character in BH
MOV BL, YY ; load second character in BL
CMP BH, BL ; compare the characters.
JNE NOT_EQUAL ; .

Assembly Langusge
Programming
(Part 1)

65

Assembly Language
Programming

66

EQUAL: MOV AH, 02H ; if characters are equal then control
MOV DL, %Y’ ; will execute this block and
INT 21H ; display ‘Y’

JMP CONTINUE ; Jump to continue loop.

NOT_EQUAL: MOV AH, 02H ; if characters are not equal then

control
MOV DI, ‘N” ; will execute this block and
INT 21 H ; display ‘N’
CONTINUE : LOOP NEXT P ; Get the next character
MOV AH,4CH ; Exit to DOS
INT 21 H
CODE ENDS
END MAINP
Discussion:

This pfogram will be executed, at least 3 times.

3.3.2 Find the Largest and the Smallest Array Values

Let us now put together whatever we have done in the preceding sections and write
down a program to find the largest and the smallest numbers from a given array. This
program uses the JGE (jump greater than or equal to) instruction, because we have
assumed the array values as signed. We have not used the JAE instruction, which
works correctly for unsigned numbers.

; Program 9: Initialise the smallest and the largest variables as the first number in
; the array. They are then compared with the other array values one by one. If the

; value happens to be smaller than the assumed smallest number or larger than the

; assumed largest value, the smallest and the largest variables are changed with the
; new values respectively. Let us use register DI to point the current array value and
; LOOP instruction for looping,

DATA SEGMENT
ARRAY DW -1,2000, -4000, 32767, 500,0.
LARGE DW- 7
SMALL DW 2
DATA ENDS
END.
CODE SEGMENT
MOV AX,DATA
MOV DS,AX ; Initialize DS

MOV DI, OFFSET ARRAY ; DI points to the array

MOV AX, [DI] ; AX contains the first element

MOV DX, AX ; initialize large in DX register

MOV BX, AX ; initialize small in BX register

, MOV C(CX,6 ; initialize loop counter
Al: MOV AX, [DI] ; get next array value

CMP AX,BX ; Is the new value smaller?

JGE A2 ; If greater then (not smaller) jump to
; A2, to check larger than large in DX

MOV BX, AX ; Otherwise it is smaller so move it to .
; the smallest value (BX register)

JMP A3 _; as it is small, thus no need

; to compare it with the large so jump

Assembly Language

; to A3 to continue or terminate loop.
Programming

A2: CMP AX,DX ; [DI] = large (Part)
JLE A3 ; if less than it implies not large so
. ; jump to A3
; to continue or terminate
MOV DX, AX ; otherwise it is larger value, so move
; it to DX that store the large value
A3: ADD DI, 2 ; DI now points to next number
LOOP Al ; repeat the loop until CX =0
MOV LARGE, DX
MOV SMALL, BX ; move the large and small in the

; memory locations
MOV AX, 4C00h
INT 21h ; halt, return to DOS -
CODE ENDS

Discussion:

Since the data is word type that is equal to 2 bytes and memory organisation is byte
wise, to point to next array value DI is incremented by 2. ~

3.3.3 Character Coded Data

The input output takes place in the form of ASCII data. These ASCII characters are
entered as a string of data. For example, to get two numbers from console, we may
enter the numbers as:

Enter first number 1234
Enter second number 3210
The sum is 4444

As each digit is input, we would store its ASCII code in a memory byte. After the
first number was input the number would be stored as follows:

* The number is entered as:

31 32 33 34 hexadecimal storage
1 2 3 4 ASCII digits

Each of these numbers will be input as equivalent ASCII digits and need to be
converted either to digit string to a 16-bit binary value that can be used for
computation or the ASCII digits themselves can be added which can be followed by
instruction that adjust the sum to binary. Let us use the conversion operation to
perform these calculations here.

Another important data format is packed decimal numbers (packed BCD). A packed
BCD contains two decimal digits per byte. Packed BCD format has the following
advantages: ‘

e The BCD numbers allow accurate calculations for almost any number of
significant digits. ' ‘
Conversion of packed BCD numbers to ASCII (and vice versa) is relatively fast.
An implicit decimal point may be used for keeping track of its position in a
separate variable. ‘

The instructions DAA (decimal adjust after addition) and DAS (decimal adjust after
subtraction) are used for adjusting the result of an addition of subtraction operation on

67

Assembly Language

Programming packed decimal numbers. However, no such instruction exists for multiplication and

division. For the cases of multiplication and division the number must be unpacked.
First, multiplied or divided and packed again. The instruction DAA and DAS has
already been explained in unit 1.

3.3.4 Code Conversion

The conversion of data from one form to another is needed. Therefore, in this section
we will discuss an example, for converting a hexadecimal digit obtained in ASCII
form to binary form. Many ASCII to BCD and other conversion examples have been
given earlier in unit 2.

Program 10:

This program converts an ASCII input to equivalent hex digit that it represents.
Thus, valid ASCII digits are 0 to 9, A to F and the program assumes that the
ASCII digit is read from 4 location in memory called ASCIIL. The hex result is
left in the AL. Since the program converts only one digit number the AL is
sufficient for the results. The result in AL is made FF if the charactér in ASCH |
is not the proper hex digit.

ALGORITHM

IF number <30h THEN error

ELSE

IF number <3Ah THEN Subtract 30h (it’s a number 0-9)

ELSE (number is >39h)

IF number <41h THEN error (number in range 3Ah-40h which is not a valid
A-F character range)

ELSE

IF number <47h THEN Subtract 37h for letter A-F 41-46 (Please note

that 41h - 37h = Ah)

ELSE ERROR

Wr We W we we W We Wwr e Ve Wwe We WwE Ws Wr we Wwe wr

; PORTS : Ndne used
; PROCEDURES : None
; REGISTERS : Uses CS, DS, AX,

DATA SEGMENT
ASCII ‘DB 3%h ; Any experimental data
DATA - ENDS
CODE SEGMENT
ASSUME CS:CODE, DS:DATA
START: = MOV AX,DATA ;initialise data segment
MOV DS, AX ; Register using AX

MOV AL, ASCII ; Get the ASCII digits of the number
' ‘ ; start the conversion

CMP AL, 30h ; If the ASCII digit is below 30h then it is not
JB ERROR ; a proper Hex digit
CMP AL, 3Ah ; compare it to 3Ah
JB NUMBER ; If greater then possibly a letter between A-F
CMP AL, 41h ; This step will be done if equal to or above
3 3Ah .
JB ERROR ; Between 3Ah and 40h is error
CMP AL, 46h
JA -~ ERROR ; The ASCII is out of 0-9 and A-F range-
- SUB AL,3%7h ; It’s a letter in the range A-F so convert
- JMP CONVERTED :
NUMBER: SUB AL, 30h. ; it is a number in the range 0-9 so convert

JMP CONVERTED
-68

. ERROR: MOV AL, OFFh ; You can also display some message here Assembly Language

CONVERTED: MOV AX, 4C00h it
INT 21h ; the hex result is in AL '
CODE ENDS
END START

Discussions:

The above program demonstrates a single hex digit represénted by an ASCII
character. The above programs can be extended to take more ASCII values and
convert them into a 16-bit binary number.

B Check Your Progress 2

1. Write the code sequence in assembly for performing following operation:

Z=(A-B)/10*C)**2

..

..

..

3. Anassembly pfogram is to be written for inputting two 4 digits decimal
numbers from console, adding them up and putting back the, results. Will you
‘ prefer packed BCD addition for such numbers? Why?

..

..

4. How can we implement nested loops, for example,
For(i=1to 10, step 1)
{for(G=1to,step 1)
add 1 to AX}
in assembly language?

..

...

3.4 PROGRAMMING FOR ARITHMETIC AND
STRING OPERATIONS

Let us discuss some more advanced features of assembly language programming in
this section. Some of these features give assembly an edge over the high level
language programming as far as efficiency is concerned. One such instruction is for
string processing. The object code generated after compiling the HLL program
containing string instruction is much longer than the same program written in
assembly language. Let us discuss this in more detail in the next subsection:

3.4.1 String Processing |

Let us write a program for comparing two strings. Consider the following piece of

code, which has been written in C to compare two strings. Let us assume that ‘strl’
and ‘str2’ are two strings, initialised by some values and ‘ind’ is the index for these
character strings: S

for (ind = 0; ((ind <9) and (str1[ind] = = str2[ind])),/ ind ++)

69

Assembly Language
Programming

70

The intermediate code in assembly language generated by a non-optimising compiler
for the above piece may look like:

MOV IND, 00 ;ind:=0 —_—
L3: CMP IND, 08 ;ind<9
JG L1 ; not so; skip
LEA AX, STR1 ; offset of strl in AX register
MOV BX, IND ; it uses a register for indexing into
; the array
LEA CX, STR2 ; str2 in CX
MOV DL, BYTE PTR CX[BX]
CMP DL, BYTE PTR AX[BX] ; strl[ind] = str2[ind]
JNE L1 ; no, skip

MOV IND, BX
: ADD IND, 01
L2: - JMP L3 ; loop back
Ll: .
What we find in the above code: a large code that could have been improved further,
if the 8086 string instructions would have been used.

ProgramJl‘ Matching two strings of same length stored in memory locations.
REGISTERS Uses CS, DS, ES, AX, DX, CX, SI, DI

DATA SEGMENT

PASSWORD DB 'FAILSAFE' ; source string
DESTSTR DB 'FEELSAFE' ; destination string
. MESSAGE DB 'String are equal $'
DATA "~ ENDS
CODE SEGMENT
ASSUME CS:CODE, DS:DATA, ES:DATA

MOV AX,DATA .

MOV DS, AX ; Initialise data segment register

MOV ES, AX . ; Initialise extra segment register
; as destination string is considered to be in extra segment. Please note that ES is also
; initialised to the same segment as of DS.

LEA SI, PASSWORD ; Load source pointer

LEA DI, DESTSTR ; Load destination pointer

MOV CX, 08 ; Load counter with string length
CLD ; Clear direction flag so that comparison is

; done in forward direction.

REPE CMPSB ; Compare the two string byte by byte

JNE NOTEQUAL ; If not equal, jump to NOTEQUAL

MOV AH, 09 ; else display message

MOV - DX, OFFSET MESSAGE ;

INT 21h ; display the message
NOTEQUAL:MOV AX, 4C00h ; interrupt function to halt

INT 21h
CODE ENDS

END

Discussion:

In the above program the instruction CMPSB compares the two strings, pointed by SI

in Data Segment and DI register in extra data segment. The strings are compared byte
by byte and then the pointers SI and DI are incremented to next byte. Please note the
last letter B in the instruction indicates a byte. If it is W, that is if instruction is

CMPSW, then comparison is done word by word and SI and DI are incremented by 2,

i

that is to next word. The REPE prefix in front of the instruction tells the 8086 to- As"m:ggl;:?ng:i'ﬁ:
decrement the CX register by one, and continue to execute the CMPSB instruction, (Part I)

until the counter (CX) becomes zero. Thus, the code size is substantially reduced.

Similarly, you can write efficient programs for moving one string to another, using
MOVS, and scanning a string for a character using SCAS.

3.4.2 Some More Arithmetic Problems

Let us now take up some more pfactical arithmetic problems.
Use of delay loops

A very useful application of assembly is to produce delay loops. Such loops are used
for waiting for some time prior to execution of next instruction.

But how to find the time for the delay? The rate at which the instructions are executed
is determined by the clock frequency. Each instruction takes a certain number of clock
cycles to execute. This, multiplied by the clock frequency of the microprocessor, gives
the actual time of execution of a instruction. For example, MOV instruction takes four
clock cycles. This instruction when run on a microprocessor with a 4Mhz clock takes
4/4, i.e. 1 microsecond. NOP is an instruction that is used to produce the delay,
without affecting the actual running of the program.

Time delay of 1 ms on a microprocessor having a clock frequency of 5 MHz would
require:

1 clock cycle =
_ SMHz

1 R .
= Seconds
5x10°
Thus, a 1-millisecond delay will require:

-3
= _14119__] clock cycles

[5x10°
= 5000 clock cycles.

The following program segment can be used to produce the delay, with the counter
value correctly initialised.

MOV CX,N ; 4 clock cycles N will vary depending on
; the amount of delay required
DELAY:-) NOP ; 3 cycles
' NOP ; 3 cycles

LOOP DELAY ; 17 or 5

LOOP insttuction takes 17 clock cycles when the condition is true and 5 clock cycles
otherwise. The condition will be true, ‘N’ number of times and false only once, when
. the control comes out of the loop. ~

To calculate ‘N’:

Total clock cycles = clock cycles for MOV + N(2*NOP clock -
~cycles +17) — 12 (when CX = 0)

71

Assembly Language
Programming

72

5000=4+N(6+17)-12
N =5000/23 =218 =0DAh

Therefore, the counter, CX, should be initialized by ODAh, in order to get the delay of
1 millisecond.

Use of array in assembly

Let us write a program to add two 5-byte numbers stored in an array. For example,
two numbers in hex can be:

20 11 01 10 FF
FF 40 30 20 10

1| 1F 51 31 31 1IF
Carry ‘

- Let us also assume that the numbers are represented as the lowest significant byte first

and put in memory in two arrays. The result is stored in the third array SUM. The
SUM also contains the carry out information, thus would be 1 byte longer than
number arrays. '

; Program 12: Add two five-byte numbers using arrays
; ALGORITHM: '
; Make count = LEN
Clear the carry flag
Load address of NUMI
REPEAT
Put byte from NUMI in accumulator
Add byte from NUM2 to accumulator + carry
Store result in SUM
Decrement count
Increment to next address
UNTIL count =0
Rotate carry into LSB of accumulator
Mask all but LSB of accumulator
Store carry result, address pointer in correct position.

f Wt W M wr M we we M uae we e

s

; PORTS : None used :
; PROCEDURES : None used
; REGISTERS : Uses CS, DS, AX, CX, BX, DX -

DATA SEGMENT
NUM1 DB OFFh, 10h ,0lh ,11h ,20h
NUM2 DB 10h, 20h, 30h, 40h ,OFFh-
SUM DB . 6DUP(0)

DATA. ENDS S ' , ,
LEN EQU 05h ;constant for length of the array

CODE SEGMENT
~ ASSUME CS:CODE, DS:DATA
START: MOV AX, DATA ; initialise data segment

MOV DS, AX ; using AX register

MOV SI, 00 ; load displacement of 1* number.
: ; SI is being used as index register

MOV CX, 0000 ; clear counter

MOV CL, LEN ; set up count to designed length

CLC ; clear carry. Ready for addition

" AGAIN: MOV AL, NUMI[SI] ; get a byte from NUM1

ADC AL, NUMZ2[SI] ; add to byte from NUM2 with carry

FINISH:

CODE

;Program 13: A good example of code conversion: Write a program to convert a
; 4-digit BCD number into its binary equivalent. The BCD number is stored as a
; word in memory location called BCD. The result is to be stored in location HEX.

MOV SUMISI], AL ; store in SUM array
INC S1

LOOP AGAIN ; continue until no- more bytes
RCL AL, Olh ; move carry into bit 0 of AL
AND AL, 0lh ; mask all but the 0" bit of AL

MOV SUM[SI], AL ; put carry into 6™ byte
MOV AX, 4C00h

INT 21h
ENDS
END START

; ALGORITHM:

; PORTS

Let us assume the BCD number as 4567
Put the BCD number into 4, 16bit registers
Extract the first digit (4 in this case)

by masking out the other three digits. Since, its place value is 1000.
So Multiply by 3E8h (that is 1000 in hexadecimal) to get 4000 = OFAOh

Extract the second digit (5)

by masking out the other three digits.

Multiply by 64h (100)

Add to first digit and get 4500 = 1194h

Extract the third digit (6)

by masking out the other three digits (0060)

Multiply by 0Ah (10)

Add to first and second digit to get 4560 = 11DO0h

Extract the last digit (7)

by masking out the other three digits (0007)

Add the first, second, and third digit to get 4567 = 11D7h
: None used

; REGISTERS: Uses CS, DS, AX, CX, BX, DX

THOU
DATA

DATA

CODE

EQU 3E8h ; 1000 = 3E8h

SEGMENT

BCD DW 4567h

HEX Dw ? ; storage reserved for result
ENDS

SEGMENT

ASSUME CS:CODE, DS:DATA

START:

MOV AX, DATA ; initialise data segment

MOV DS, AX ; using AX register

MOV AX, BCD ; get the BCD number AX = 4567
MOV BX, AX ; copy number into BX; BX = 4567
MOV AL, AH ; place for upper 2 digits in AX = 4545
MOV BH, BL ; place for lower 2 digits in BX = 6767

; split up numbers so that we have one digit

; in each register

MOV CL, 04 ; bit count for rotate
ROR AH, CL ; digit 1 (MSB) in lower four bits of AH,
: : AX =54 45
ROR BH,CL ; digit 3 in lower four bits of BH.
; BX =176 67

- AND AX, OFOFH ; mask upper four bits of each digit.

; AX =04 05

Assembly Language
Programming
(PartI)

73

Assembly Language

Programming

74

AND
MOV

BX, OFOFH
CX, AX

; BX =0607
; copy AX into CX so that can use AX for
; multiplication CX = 04 05

; CH contains digit 4 having place value 1000, CL contains digit 5

; having place value 100, BH contains digit 6 having place value 10 and
; BL contains digit 7 having unit place value.

; S0 obtain the number as CH x 1000 + CL x 100 + BH x 10 + BL

; zero AH and AL

; now multiply each number by its place
; value
; digit 1 to AL for multiply
; no immediate multiplication is allowed S0
; move thousand to DI '
; digit 1 (4)*1000
; result in DX and AX. Because BCD digit
; will not be greater than 9999, the result will
; be in AX only. AX = 4000

; zero DH

;move BLto DL,so DL=7

; add AX; so DX =4007

; load value for 100 into AL

; multiply by digit 2 from CL

; add to total in DX. DX now contains
; (7 + 4000 + 500) ‘

; load value of 10 into AL

; multiply by digit 3 in BH

; add to total in DX; DX contains
; (7 +4000 + 500 +60)

; put result in HEX for return

Why should we perform string processing in assembly language in 8086 and not

..

..

..

..

...

...

MOV AX, 0000H
MOV AL,CH
MOV DI, THOU
MUL DI
MOV DH, 00H
MOV DL, BL
ADD DX, AX
MOV AX, 0064h
MUL CL
ADD DX, AX
MOV AX, 000Ah
MUL BH
ADD DX, AX
MOV HEX, DX
MOV AX, 4C00h
' INT 21h
CODE ENDS
END START
EF Check Your Progress 3
1.
in high-level language?
2. What is the function of direction flag?
3, What is the function of NOP statement?

..

..

3.5 SUMMARY

In this unit, we have covered sorhe basic aspects of assembly language programming.
We started with some elementary arithmetic problems, code conversion problems,
various types of loops and graduated on to do string processing and slightly complex
arithmetic. As part of good programming practice, we also noted some points that
should be kept in mind while coding. Some of them are:

. An algorithm should always precede your program. It is a good programming
practice. This not only increases the readability of the program, but also makes
your program less prone to logical errors.

Use comments liberally. You will appreciate them later,

Study the instructions, assembler directives and addressing modes carefully,
before starting to-code your program. You can even use a debugger to get a
clear understanding of the instructions and addressing modes.

. Some instructions are very specific to the type of operand they are beifig used
with, example signed numbers and unsigned numbers, byte operands and word
operands, so be careful !!

. Certain instructions except some registers to be initialised by some values
before being executed, example, LOOP expects the counter value to be
contained in CX register, string instructions expect DS:S] to be initialised by the
segment and the offset of the string instructions, and ES:DI to be with the
destination strings, INT 21h expects AH register to contain the function number
of the operation to be carried out, and depending on them some of the additional
registers also to be initialised. So study them carefully and do the needful. In
case you miss out on something, in most of the cases, you will not get an error
message, instead the 8086 will proceed to execute the instruction, with whatever
junk is lying in those registers.

In spite of all these complications, assembly languages is still an indispensable part of
programming, as it gives you an access to most of the hardware features of the
machine, which might not be possible with high level language. Secondly, as we have
also seen some kind of applications can be written and efficiently executed in
assembly language. We justified this with string processing instructions; you will
appreciate it more when you actually start doing the assembly language programming.
You can now perform some simple exercise? from the further readings.

In the next block, we take up more advanced assembly language programming, w.hich
also includes accessing interrupts of the machine.

3.6 SOLUTIONS/ ANSWERS

Check Your Progress 1

1. False 2. False 3. True 4. True 5. True 6. False

Check Your Progress 2 _
1. MOV AX, A ; bring A in AX
SUB AX,B ; subtract B
MOV DX, 0000h ; move 0 to DX as it will be used for word division
MOV . BX, 10 ; move dividend to BX
IDIV BX ; divide
MUL C ; ((A-B) /10 * C) in AX
IMUL AX ; square AX to get (A-B/10* C)* *2

Assembly Language
Programming .
(Part 1)

75

Assembly Language
Programming

76

2. Assuming that each array element is a word variable.

MOV CX, COUNT ; put the number of elements of the array in
) ; CX register
MOV AX, 0000h ; zero SI and AX
MOV SI, AX
; add the elements of array in AX again and again
AGAIN: ADD AX, ARRAY[SI] ; another way of handling array
ADD SL 2 ; select the next element of the array
LOOP AGAIN ; add all the elements of the array. It will
terminate when CX becomes zero.
MOV TOTAL, AX- ; store the results in TOTAL.

Yes, because the conversion efforts are less.

We may use two nested loop instructions in assembly also. However, as both the
loop instructions use CX, therefore every time before we are entering inner loop
we must push CX of outer loop in the stack and reinitialize CX to the inner loop
requirements.

Check Your Progress 3

1.

The object code generated on compiling high level languages for string processing
commands is, in general, found to be long and contains several redundant
instructions. However, we can perform string processing very efficiently in 8086
assembly language. :

Direction flag if clear will cause REPE statement to perform in forward direction.
That is, in the given example the strings will be compared from first element to
last.

It produces a delay of a desired clock time in the execution. This instruction is
useful while development of program. A collection of these instructions can be
used to fill up some space in the code segment, which can be changed with new
code lines without disturbing the position of existing code. This is particularly
used when a label is specified. '

