UNIT8 FUNCTIONS

Structure

8.0 Introduction

8.1 Objectives

8.2 Definition of a Function

8.3 Declaration of a Function

8.4 Function Prototypes

8.5 The Return Statement

8.6 Types of Variables and Storage Classes

8.6.1 Automatic Variables
8.6.2 External Variables
8.6.3 Static Variables
8.6.4 Register Variables

8.7 Types of Function Invoking
8.8 Call by Value

8.9 Recursion

8.10 Summary

8.11 Solutions / Answers

8.12 Further Readings

8.0 INTRODUCTION

To make programming simple and easy to debug, we break a larger program into
smaller subprograms which perform ‘well defined tasks’. These subprograms are
called functions. So far we have defined a single function main ().

After reading this unit you will be able to define many other functions and the main(’)
function can call up these functions from several different places within the program,
to carry out the required processing.

Functions are very important tools for Modular Programming, where we break large
programs into small subprograms or modules (functions in case of C). The use of
functions reduces complexity and makes programming simple and easy to understand.

In this unit, we will discuss how functions are defined and how are they accessed from
the main program? We will also discuss various types of functions and how to invoke
them. And finally you will learn an interesting and important programming technique
known as Recursion, in which a function calls within itself.

8.1 OBJECTIVES

After going through this unit, you will learn:

the need of functions in the programming;

how to define and declare functions in ‘C’ Language;

different types of functions and their purpose;

how the functions are called from other functions;

how data is transferred through parameter passing, to functions and the Return
statement;

recursive functions; and

o the concept of ‘Call by Value’ and its drawbacks.

55

Control Statements,
Arrays and
Functions

56

8.2 DEFINTION OF A FUNCTION

A function is a self- contained block of executable code that can be called from any
other function .In many programs, a set of statements are to be executed repeatedly at
various places in the program and may with different sets of data, the idea of functions
comes in mind. You keep those repeating statements in a function and call them as
and when required. When a function is called, the control transfers to the called
function, which will be executed, and then transfers the control back to the calling
function (to the statement following the function call). Let us see an example as
shown below:

Example 8.1
/* Program to illustrate a function*/

#include <stdio.h>
main ()

{

void sample();
printf(“\n You are in main”);

}

void sample()

{

printf(*“‘\n You are in sample”);

}

OUTPUT

You are in sample
You are in main

Here we are calling a function sample () through main() i.e. control of execution
transfers from main() to sample() , which means main() is suspended for some time
and sample() is executed. After its execution the control returns back to main(), at
the statement following function call and the execution of main() is resumed.

The syntax of a function is:

return data type function_name (list of arguments)

{
datatype declaration of the arguments;
executable statements;
return (expression);

/

where,

e return data type is the same as the data type of the variable that is returned by the
function using return statement.
e a function name is formed in the same way as variable names / identifiers are

formed.
e the list of arguments or parameters are valid variable names as shown below,
separated by commas: (data typel varl,data type2 var2,........ data type n var n)

for example (int x, float y, char z).
e arguments give the values which are passed from the calling function.

e the body of function contains executable statements. Functions
e the return statement returns a single value to the calling function.

Example 8.2
Let us write a simple function that calculates the square of an integer.
/*Program to calculate the square of a given integer™/

/* square() function */

{
int square (int no) /*passing of argument */
int result ; /* local variable to function square */
result = no*no;
return (result); /* returns an integer value */
}
/*1t will be called from main()as follows */
main()
{
int n ,sq; /* local variable to function main */

printf (“Enter a number to calculate square value”);
scanf(“%d”,&n);

sq=square(n); /* function call with parameter passing */
printf ("\nSquare of the number is : %d”, sq);
} /* program ends */

OUTPUT

Enter a number to calculate square value : 5
Square of the number is : 25

8.3 DECLARATION OF A FUNCTION

As we have mentioned in the previous section, every function has its declaration and
function definition. When we talk of declaration only, it means only the function
name, its argument list and return type are specified and the function body or
definition is not attached to it. The syntax of a function declaration is:

return data type function_name(list of arguments);

For example,

int square(int no);
float temperature(float c, float f);

We will discuss the use of function declaration in the next section.

8.4 FUNCTION PROTOTYPES

In Example 8.1 for calculating square of a given number, we have declared function
square() before main() function; this means before coming to main(), the compiler

knows about square(), as the compilation process starts with the first statement of 57

Control Statements,
Arrays and
Functions

58

any program. Now suppose, we reverse the sequence of functions in this program i.e.,
writing the main() function and later on writing the square() function, what
happens ? The “C” compiler will give an error. Here the introduction of concept of
“function prototypes” solves the above problem.

Function Prototypes require that every function which is to be accessed should be
declared in the calling function. The function declaration, that will be discussed
earlier, will be included for every function in its calling function . Example 8.2 may
be modified using the function prototype as follows:

Example 8.3

/*Program to calculate the square of a given integer using the function prototype*/
#include <stdio.h>

main ()
{
mntn, sq;
int square (int) ; /* function prototype */
printf (“Enter a number to calculate square value”);
scanf(“%d”,&n);
sq = square(n); /* function call with parameter passing */
printf (“\nSsquare of the number is : %d”, sq);
}
/* square function */
int square (int no) /*passing of argument */
{
int result ; /* local variable to function square */
result = no*no;
return (result); /* returns an integer value */
}
OUTPUT

Enter a number to calculate square value : 5
Square of the number is: 25

Points to remember:

e Function prototype requires that the function declaration must include the return
type of function as well as the type and number of arguments or parameters
passed.

e The variable names of arguments need not be declared in prototype.

e The major reason to use this concept is that they enable the compiler to check if
there is any mismatch between function declaration and function call.

Check Your Progress 1

(1) Write a function to multiply two integers and display the product.

(2) Modify the above program, by introducing function prototype in the main
function.

Functions

8.5 THE return STATEMENT

If a function has to return a value to the calling function, it is done through the return
statement. It may be possible that a function does not return any value; only the
control is transferred to the calling function. The syntax for the refurn statement is:

return (expression);

We have seen in the square() function, the refurn statement, which returns an integer
value.

Points to remember:

e You can pass any number of arguments to a function but can return only one
value at a time.

For example, the following are the valid return statements

(a) return (5);
(b) return (x*y);

For example, the following are the invalid return statements
(©) return (2, 3);
(d) return (X, y);

. If a function does not return anything, veid specifier is used in the function
declaration.

For example:

void square (int no)

{

Int sq;

sq = no*no;

printf (“square is %d”, sq);
H

e All the function’s return type is by default is “int”, i.e. a function returns an
integer value, if no type specifier is used in the function declaration.

Some examples are:

(i) square (int no); /* will return an integer value */
(i) int square (int no); /* will return an integer value */
(iii) void square (int no); /* will not return anything */

. What happens if a function has to return some value other than integer? The
answer is very simple: use the particular type specifier in the function
declaration.

For example consider the code fragments of function definitions below:

1) Code Fragment - 1

char func_char(........)

{
char c; 59

Control Statements,
Arrays and
Functions

60

2) Code Fragment - 2

Thus from the above examples, we see that you can return all the data types
from a function, the only condition being that the value returned using return
statement and the type specifier used in function declaration should match.

o A function can have many return statements. This thing happens when some
condition based returns are required.

For example,

/*Function to find greater of two numbers*/
int greater (int X, int y)
{
if (x>y)
return (X);
else
return (y);

}

e And finally, with the execution of return statement, the control is transferred to

the calling function with the value associated with it.

In the above example if we take x = 5 and y = 3, then the control will be
transferred to the calling function when the first return statement will be
encountered, as the condition (x > y) will be satisfied. All the remaining
executable statements in the function will not be executed after this returning.

Check Your Progress 2

1. Which of the following are valid return statements?

a) return (a);

b) return (z,13);

c) return (22.44);

d) return;

e) return (x*x, y*y);

Functions

8.6 TYPES OF VARIABLES AND STORAGE CLASSES

In a program consisting of a number of functions a number of different types of
variables can be found.

Global vs. Static variables: Global variables are recognized through out the program
whereas local valuables are recognized only within the
function where they are defined.

Static vs. Dynamic variables: Retention of value by a local variable means, that in
static, retention of the variable value is lost once the
function is completely executed whereas in certain
conditions the value of the variable has to be retained
from the earlier execution and the execution retained.

The variables can be characterized by their data type and by their storage class. One
way to classify a variable is according to its data type and the other can be through its
storage class. Data type refers to the type of value represented by a variable whereas
storage class refers to the permanence of a variable and its scope within the program
i.e. portion of the program over which variable is recognized.

Storage Classes
There are four different storage classes specified in C:

1. Auto (matic) 2. Extern (al)
3. Static 4. Register

The storage class associated with a variable can sometimes be established by the

location of the variable declaration within the program or by prefixing keywords to

variables declarations.

For example: auto int a, b;
static int a,b

extern float f;

b

8.6.1 Automatic Variables

The variables local to a function are automatic i.e., declared within the function. The
scope of lies within the function itself. The automatic defined in different functions,
even if they have same name, are treated as different. It is the default storage class for
variables declared in a function.

Points to remember:

The auto is optional therefore there is no need to write it.
All the formal arguments also have the auto storage class.
The initialization of the auto-variables can be done:

e in declarations
e using assignment expression in a function

If not initialized the unpredictable value is defined.
The value is not retained after exit from the program.

Let us study these variables by a sample program given below:

61

Control Statements,
Arrays and
Functions

62

Example 8.4

/* To print the value of automatic variables */

include <stdio.h>

main (int argc, char * argv[])
{

int a,b;

double d;

printf(“%d”, argc);

a=10;

b=5;

d=(b*b)—(a/2);
printf(“%d, %d, %f”, a, b, d);
}

All the variables a, b, d, argc and argv [] have automatic storage class.

8.6.2 External (Global) Variables

These are not confined to a single function. Their scope ranges from the point of
declaration to the entire remaining program. Therefore, their scope may be the entire
program or two or more functions depending upon where they are declared.

Points to remember:

o These are global and can be accessed by any function within its scope.
Therefore value may be assigned in one and can be written in another.

o There is difference in external variable definition and declaration.

o External Definition is the same as any variable declaration:

e Usually lies outside or before the function accessing it.

o It allocates storage space required.

. Initial values can be assigned.

o The external specifier is not required in external variable definition.

o A declaration is required if the external variable definition comes after the
function definition.

o A declaration begins with an external specifier.

o Only when external variable is defined is the storage space allocated.

o External variables can be assigned initial values as a part of variable definitions,
but the values must be constants rather than expressions.

. If initial value is not included then it is automatically assigned a value of zero.

Let us study these variables by a sample program given below:
Example 8.5
/* Program to illustrate the use of global variables*/

include <stdio.h>

int gv; /*global variable®/
main ()

void function1(); /*function declaration®/
gv=10;

printf (“%d is the value of gv before function call\n”, gv);
functionl();
printf (“%d is the value of gv after function call\n”, gv);

}

Functions

void functionl ()

{
gv=15:}
OuUTPUT

10 is the value of gv before function call
15 is the value of gv after function call

8.6.3 Static Variables

In case of single file programs static variables are defined within functions and
individually have the same scope as automatic variables. But static variables retain
their values throughout the execution of program within their previous values.

Points to remember:

e The specifier precedes the declaration. Static and the value cannot be accessed
outside of their defining function.

e The static variables may have same name as that of external variables but the
local variables take precedence in the function. Therefore external variables
maintain their independence with locally defined auto and static variables.

e Initial value is expressed as the constant and not expression.

e Zeros are assigned to all variables whose declarations do not include explicit
initial values. Hence they always have assigned values.

e Initialization is done only is the first execution.

Let us study this sample program to print value of a static variable:

Example 8.6

/* Program to illustrate the use of static variable*/
#include <stdio.h>

main()

{

int call_static();
int 1i,j;

i=j=0;
j=call_static();
printf(*“%d\n” j);
j = call_static ();
printf(*“%d\n”,j);
j=call_static();
printf(“%d\n”j);
}

int call static()
{

static int 1=1;
int j;

I=%

1++;

return(j);

}
63

Control Statements,
Arrays and
Functions

64

OUTPUT
1

2
3

This is because i is a static variable and retains its previous value in next execution of
function call_static(). To remind you j is having auto storage class. Both functions
main and call_static have the same local variable i and j but their values never get
mixed.

8.6.4 Register Variables

Besides three storage class specifications namely, Automatic, External and Static,
there is a register storage class. Registers are special storage areas within a
computer’s CPU. All the arithmetic and logical operations are carried out with these
registers.

For the same program, the execution time can be reduced if certain values can be
stored in registers rather than memory. These programs are smaller in size (as few
instructions are required) and few data transfers are required. The reduction is there in
machine code and not in source code. They are declared by the proceeding declaration
by register reserved word as follows:

register int m;

Points to remember:

e These variables are stored in registers of computers. If the registers are not
available they are put in memory.

e Usually 2 or 3 register variables are there in the program.

e Scope is same as automatic variable, local to a function in which they are
declared.

e Address operator ‘&’ cannot be applied to a register variable.

e I[fthe register is not available the variable is though to be like the automatic
variable.

e Usually associated integer variable but with other types it is allowed having
same size (short or unsigned).

e (Can be formal arguments in functions.

e Pointers to register variables are not allowed.

e These variables can be used for loop indices also to increase efficiency.

8.7 TYPES OF FUNCTION INVOKING

We categorize a function’s invoking (calling) depending on arguments or parameters
and their returning a value. In simple words we can divide a function’s invoking into
four types depending on whether parameters are passed to a function or not and
whether a function returns some value or not.

The various types of invoking functions are:

With no arguments and with no return value.
With no arguments and with return value
With arguments and with no return value
With arguments and with return value.

Let us discuss each category with some examples:

TYPE 1: With no arguments and have no return value

As the name suggests, any function which has no arguments and does not return any

values to the calling function, falls in this category. These type of functions are

confined to themselves i.e. neither do they receive any data from the calling function

nor do they transfer any data to the calling function. So there is no data
communication between the calling and the called function are only program control
will be transferred.

Example 8.7
/* Program for illustration of the function with no arguments and no return value*/
/* Function with no arguments and no return value*/

#include <stdio.h>
main()
{
void message();
printf(“Control is in main\n”);

message(); /* Type 1 Function */
printf(“‘Control is again in main\n”);

h
void message()

{

printf(“Control is in message function\n”);

} /* does not return anything */
OUTPUT

Control is in main
Control is in message function
Control is again in main

TYPE 2: With no arguments and with return value

Suppose if a function does not receive any data from calling function but does send
some value to the calling function, then it falls in this category.

Example 8.8

Write a program to find the sum of the first ten natural numbers.
/* Program to find sum of first ten natural numbers */
#include <stdio.h>

int cal sum()
{
int 1, s=0;
for (i=0; i<=10; i++)
s=s +1;
return(s); /* function returning sum of first ten natural numbers */

}

main()

{

int sum;

Functions

65

Control Statements,
Arrays and
Functions

66

sum = cal_sum();
printf(*“Sum of first ten natural numbers is % d\n”, sum);

}

OUTPUT
Sum of first ten natural numbers is 55

TYPE 3: With Arguments and have no return value

If a function includes arguments but does not return anything, it falls in this
category. One way communication takes place between the calling and the called
function.

Before proceeding further, first we discuss the type of arguments or parameters here.
There are two types of arguments:

o Actual arguments
o Formal arguments

Let us take an example to make this concept clear:
Example 8.9

Write a program to calculate sum of any three given numbers.
#include <stdio.h>

main()

{

int al, a2, a3;

void sum(int, int, int);

printf(“Enter three numbers: *);

scanf (“%d%d%d”,&al,&a2,&a3);
sum (al,a2,a3); /* Type 3 function */
h

/* function to calculate sum of three numbers */
void sum (int f1, int 2, int f3)

{

int s;

s = fl1+ 2+ f3;

printf (“\nThe sum of the three numbers is %d\n”,s);

}

OUTPUT

Enter three numbers: 23 34 45
The sum of the three numbers is 102

Here f1, £2, £3 are formal arguments and al, a2, a3 are actual arguments.
Thus we see in the function declaration, the arguments are formal arguments, but

when values are passed to the function during function call, they are actual arguments.

Note: The actual and formal arguments should match in type, order and number

TYPE 4: With arguments function and with return value

In this category two-way communication takes place between the calling and called
function i.e. a function returns a value and also arguments are passed to it. We modify
above Example according to this category.

Example 8.10

Write a program to calculate sum of three numbers.
/*Program to calculate the sum of three numbers*/

#include <stdio.h>
main ()
{
int al, a2, a3, result;
int sum(int, int, int);
printf(“Please enter any 3 numbers:\n”);
scanf (“%d %d %d”, & al, &a2, &a3);
result = sum (al,a2,a3); /* function call */
printf (“Sum of the given numbers is : %d\n”, result);

b

/* Function to calculate the sum of three numbers */
int sum (int f1, int £2, int f3)

{

return(f1+ f2 + £3); /* function returns a value */

}

OUTPUT

Please enter any 3 numbers:
345

Sum of the given numbers is: 12

8.8 CALL BY VALUE

So far we have seen many functions and also passed arguments to them, but if we
observe carefully, we will see that we have always created new variables for
arguments in the function and then passed the values of actual arguments to them.
Such function calls are called “call by value”.

Let us illustrate the above concept in more detail by taking a simple function of
multiplying two numbers:

Example 8.11

Write a program to multiply the two given numbers

#include <stdio.h>

main()

{

ntx,y,z

int mul(int, int);

printf (“Enter two numbers: \n”);
scanf (“%d %d”,&x,&y);

7z=mul(x, y); /* function call by value */
printf (““n The product of the two numbers is : %d”, z);
H

Functions

67

Control Statements,
Arrays and
Functions

68

/* Function to multiply two numbers */
int mul(int a, int b)

{

nt c;

c =a*b;

return(c); }

OUTPUT
Enter two numbers:

23 2
The product of two numbers is: 46

Now let us see what happens to the actual and formal arguments in memory.

main() function mul() function
X a
2 > 2 A
y b
3 - 3 >_
z c
6 < 6

The variables are local to the
mul () function which are
—» created in memory with the
function call and are
destroyed with the return to
the called function

Variables local to main() function

Variables local to mul() function

What are meant by local variables? The answer is local variables are those which can

be used only by that function.

Advantages of Call by value:

The only advantage is that this mechanism is simple and it reduces confusion

and complexity.

Disadvantages of Call by value:

As you have seen in the above example, there is separate memory allocation for
each of the variable, so unnecessary utilization of memory takes place.

The second disadvantage, which is very important from programming point of
view, is that any changes made in the arguments are not reflected to the calling
function, as these arguments are local to the called function and are destroyed

with function return.

Let us discuss the second disadvantage more clearly using one example:

Example 8.12

Write a program to swap two values.

/*Program to swap two values*/ Functions

#include <stdio.h>

main ()
{
ntx=2,y=3;

void swap(int, int);

printf (“\n Values before swapping are %d %d”, x, y);

swap (X, y);
printf (“\n Values after swapping are %d %d”, X, y);

}

/* Function to swap(interchange) two values */
void swap(int a, int b)

{

nt t;

t=a;
a=Db;
b=t;

}
OUTPUT

Values before swap are 2 3
Values after swap are 2 3

But the output should have been 3 2. So what happened?

X a a
2 —> 2 3
t 2
y b H b
3 |3 2
Values passing from main (') to swap() function Variables in swap () function

Here we observe that the changes which takes place in argument variables are not
reflected in the main() function; as these variables namely a, b and t will be destroyed
with function return.

e All these disadvantages will be removed by using “call by reference”, which will
be discussed with the introduction of pointers in UNIT 11.

Check Your Progress 3
1. Write a function to print Fibonacci series upto ‘n’ terms 1,1,2,3,.....n
2. Write a function power (a, b) to calculate a”

69

Control Statements,
Arrays and
Functions

70

8.9 RECURSION

Within a function body, if the function calls itself, the mechanism is known as
‘Recursion’ and the function is known as ‘Recursive function’. Now let us study this
mechanism in detail and understand how it works.

. As we see in this mechanism, a chaining of function calls occurs, so it is
necessary for a recursive function to stop somewhere or it will result into
infinite callings. So the most important thing to remember in this mechanism is
that every “recursive function” should have a terminating condition.

o Let us take a very simple example of calculating factorial of a number, which
we all know is computed using this formula 5! = 5*¥4%3%2*]

° First we will write non — recursive or iterative function for this.

Example 8.13

Write a program to find factorial of a number

#include <stdio.h>
main ()

{

int n, factorial;

int fact(int);

printf (“Enter any number:\n”);

scanf ("%d", &n);

factorial = fact (n); /* function call */
printf (“Factorial is %d\n”, factorial);

H

/* Non recursive function of factorial */

int fact (int n)

{

intres=1, i;
fori=n;i>=1;i--)
res =res *1;

return (res);

h

OUTPUT

Enter any number: 5
Factorial is 120

How it works?

Suppose we call this function withn =5

Iterations:

1. i=5res=1*5=5

2. 1=4res=5%4=20

3. 1=3res=20*4=060
4. i=2res= 60*2 =120
5. i=1res=120*1=120

Now let us write this function recursively. Before writing any function recursively,
we first have to examine the problem, that it can be implemented through recursion.

For instance, we know n! =n* (n — 1)! (Mathematical formula)

Or fact (n) = n*fact (n-1)
Or fact (5) = S*fact (4)

That means this function calls itself but with value of argument decreased by ‘I°.

Example 8.14

Modify the program 8 using recursion.

/*Program to find factorial using recursion*/
#include<stdio.h>

main()

{

int n, factorial;

int fact(int);

printf("Enter any number: \n");
scanf("%d",&n);

factorial = fact(n); /*Function call */
printf ("Factorial is %d\n", factorial); }

/* Recursive function of factorial */
int fact(int n)

{
int res;
if(ln==1) /* Terminating condition */
return(1);
else
res = n*fact(n-1); /* Recursive call */
return(res); }
OUTPUT

Enter any number: 5
Factorial is 120

How it works?

Suppose we will call this function with n =5

A
fact (5) T 120

v
S5*fact(4) 5*%24

l T Returning Process
4*fact(3) 4*6(=24)
3*fact(2) 3*2*1(=6)
2*fact(1) 2* 1(=2)

2*1 (It terminates here)

Functions

71

Control Statements,
Arrays and
Functions

72

Thus a recursive function first proceeds towards the innermost condition, which is the
termination condition, and then returns with the value to the outermost call and
produces result with the values from the previous return.

Note: This mechanism applies only to those problems, which repeats itself. These
types of problems can be implemented either through loops or recursive functions,
which one is better understood to you.

Check Your Progress 4

1. Write recursive functions for calculating power of a number ‘a’ raised by

another number ‘b’ i.e. a°

8.10 SUMMARY

In this unit, we learnt about “Functions”: definition, declaration, prototypes, types,
function calls datatypes and storage classes, types function invoking and lastly
Recursion. All these subtopics must have given you a clear idea of how to create and
call functions from other functions, how to send values through arguments, and how
to return values to the called function. We have seen that the functions, which do not
return any value, must be declared as “void”, return type. A function can return only
one value at a time, although it can have many return statements. A function can
return any of the data type specified in ‘C’.

Any variable declared in functions are local to it and are created with function call
and destroyed with function return. The actual and formal arguments should match in
type, order and number. A recursive function should have a terminating condition i.e.
function should return a value instead of a repetitive function call.

8.11 SOLUTIONS / ANSWERS

Check Your Progress 1

1. /* Function to multiply two integers */
int mul(int a, int b)
{ .
nt c;
¢ = a*b;
return(¢);

}

2. #include <stdio.h>
main ()
{.
mtx,y,z
int mul (int, int); /* function prototype */
printf (“Enter two numbers”);
scanf (“%d %d”, &x, &y);
z=mul (X, y); /* function call */
printf (“result is %d”, z); }

Check Your Progress 2
1. (a) Valid

(b) Inwvalid

(¢) Valid

(d) Valid

(¢) Invalid
Check Your Progress 3

1. /* Function to print Fibonacci Series */

void fib(int n)

{

}

2. /* Non Recursive Power function i.e. pow(a, b) */

int pow(int a, int b)

{
inti,p=1;
for(i=1;1<=b;it+t+)
p=p*a;
return (p);
H
Check Your Progress 4
1. /* Recursive Power Function */

int pow (inta, intb)
if(b==0)
return (1);

{

}

/* Main Function */

int curr_term, int count = 0;
int first = 1;
int second = 1;

print (“%d %d”, curr_term);

count = 2;

while(count < =n)

{ curr_term = first + second,
printf (“%d”, curr_term);
first = second;
second = curr_term,;

count++;

}

else

return (a* pow (a, b-1));

main ()

{
inta, b, p;
printf (““ Enter two numbers”);
scanf (“%d %d”, &a, &b);
p =pow (a, b);
printf (““ The result is %d”, p);

}

/* Recursive call */

/* Function call */

Functions

73

Control Statements,
Arrays and
Functions

74

8.12

FURTHER READINGS

—_—

The C programming language, Brain W. Kernighan, Dennis M. Ritchie, PHI
C,The Complete Reference, Fourth Edition, Herbert Schildt, Tata McGraw
Hill, 2002.

Computer Programming in C, Raja Raman. V, 2002, PHI.

C,The Complete Reference, Fourth Edition, Herbert Schildt, TMGH,2002.

	UNIT 8 FUNCTIONS
	Structure
	
	Check Your Progress 2

	TYPES OF VARIABLES AND STORAGE CLASSES
	
	Storage Classes
	8.6.1Automatic Variables
	
	
	
	Let us study these variables by a sample program given below:

	8.6.2External (Global) Variables
	
	
	
	Let us study these variables by a sample program given below:

	8.6.3Static Variables
	
	
	
	Let us study this sample program to print value of a static variable:
	Example 8.6
	#include <stdio.h>

	8.6.4Register Variables
	
	Note: The actual and formal arguments should match in type, order and number
	Write a program to find factorial of a number
	Check Your Progress 4

	Check Your Progress 1

