UNIT S REDUCED INSTRUCTION SET
COMPUTER ARCHITECTURE

Structure ' Page No.
5.0 Introduction . 83
5.1 Objectives 83

5.2 Introduction to RISC 83
52.t  Importance of RISC Processors ’
5.22  Reasons for Increased Complexity
5.2.3  High Level Language Program Characteristics .

5.3 RISC Architecture 88

5.4 The Use of Large Register File 90
5.5 Comments on RISC 93
5.6 RISC Pipelining _ 94
5.7 Summary 9%
5.8 Solutions/ Answers 98

5.0 INTRODUCTION

In the previous units, we have discussed the instruction set, register organization and
pipelining, and control unit organization. The trend of those years was to have a large
instruction set, a large number of addressing modes and about 16 ~32 registers.
However, their existed a pool of thought which was in favour of having simplicity in
instruction set. This logic was mainly based on the type of the programs, which were
being written for various machines. This led to the development of a new type of
computers called Reduced Instruction Set Computer (RISC). In this unit, we will
discuss about the RISC machines. Qur emphasis will be on discussing the basic
principles of RISC and its pipeline. We will also discuss the arithmetic and logic units
here.

5.1 OBJECTIVES

After going through this unit you should be able to:

define why complexity of instruction increased?;
describe the reasons for developing RISC;

define the basic design principles of RISC;

describe the importance of having large register file;
discuss some of the common comments about RISC;
describe RISC pipelining; and

define the optimisation in RISC pipelining,.

5.2 INTRODUCTION TO RISC

The aim of computer architects is to design computers which are cheaper and more
powerful than their predecessors. A cheaper computer has:

e Low hardware manufacturing cost.
e Low Cost for programming scalable/ portable architecture that require low costs
for debugging the initial hardware and subsequent programs.

83



84

The Central
Processing Unit

If we review the history of computer families, we find that the most common
architectural change is the trend towards even more complex machines.

5.2.1 Importance of RISC Processors

Reduced Instruction Set Computers recognize a relatively limited number of
instructions. One advantage of a reduced instruction set is that RISC can execute the
instructions very fast because these are so simple. Another advantage is that RISC
chips require fewer gates and hence transistors, which makes them cheaper to design
and produce,

An instruction of RISC machine can be executed in one cycle, as there exists an
instruction pipeline. This may enhance the speed of instruction execution. In addition,
the control unit of the RISC processor is simpler and smaller, so much so that it
acquires only 6% space for a processor in comparison to Complex Instruction Set
Computers (CISC) in which the control unit occupies about 50%.of space. This saved
space leaves a lot of room for developing a number of registers.

This further enhances the processing capabilities of the RISC processor. It also
necessitates that the memory to register “LOAD” and “STORE” are independent
instructions.

Various RISC Processors

RISC has fewer design bugs, its simple instructions reduce design time. Thus, because
of all the above important reasons RISC processors have become very popular. Some
of the RISC processors are:

SPARC Processors

Sun 4/100 series, Sun 4/310 SPARCserver 310, Sun 4/330 SPARCserver 330, Sun

4/350 SPARCserver 350, Sun 4/360 SPARCserver 360, Sun 4/370 SPARCserver 370,
Sun 4/20, SPARCstation SLC, Sun 4/40 SPARCstation IPC, Sun 4/75, SPARCstation
2.

verPC Processors

MPC603, MPC740, MPC750, MPC755, MPC7400/7410, MPC745x, MPC7450,
MPC8240, MPC8245.

Titanium — IA64 Processor

5.2.2 Reasons for Increased Complexity

Let us see what the reasons for increased complexity are, and what exactly we mean
by this.

‘Speed of Memory Versus Speed of CPU

In the past, there existed a large gap between the speed of a processor and memory.
Thus, a subroutine execution for an instruction, for example floating point addition,
may have to touow 2 "_ngthy instruction sequence. The question is; if we make it a
mach:r- astruction then only one instruction fetch will be required and rest will be
done with control unit sequence. Thus, a “higher level” instruction can be added to
- :Lines in an attempt to improve performance.

However, this assumption is not very valid in the present era where the Main memory
is supported with Cache technology. Cache memories have reduced the difference
between the CPU and the memory speed and, therefore, an instruction execution
through a subroutine step may not be that difficult.



Reduced Instruction
Set Computer
Architecture

Let us explain it with the help of an example:

Suppose the floating poinf peration ADD A, B requires the following steps
(assuming the machine do not have floating point registers) and the registers being
used for exponent are E1, 1.2, and EO (output); for mantissa M1, M2 and MO

(output):

Load the exponent of A in E1l
Load the mantissa of A in M1
Load the exponent of B in E2
Load the mantissa of B in M2
Comparz E1 and E2
- If E1 = E2 then MO € M1 + M2 and EO € El
Normalise MO and adjust EO
. Result will be contained in MO, E1
else if E1< E2 then find the difference = E2 — E1
. Shift Right M1, by difference
. MO € M1 + M2 and EO € E2
. Normalise MO and adjust EO
. Result is contained in MO, EO
else E2 < E1, if so find the difference = E1 — E2
. Shift Right M2 by difference above
. MO € M1 + M2 and EO € El
. Normalise MO and adjust E1 into EO
) Result is contained in MO, EO
Store the above results in A
Checks overflow underflow if any.

If all these steps are coded as one machine instruction, then this simple instruction will
require marly instruction execution cycles. If this instruction is made as part of the
machine instruction set as: ADDF A,B (Add floating point numbers A & B and store
results in A) then it will just be a single machine instruction. All the above steps
required will then be coded with the help of micro-operations in the form of Control
Unit Micro-Program. Thus, just one instruction cycle (although a long one) may be
needed. Th:s cycle will require just one instruction fetch. Whereas in the program
memory instructions will be fetched.

However, faster cache memory for Instruction and data stored in registers can create
an almost similar instruction execution environment. Pipelining can further enhance
'such speed. Thus, creating an instruction as above may not result in faster execution.

Microcode and VLSI Technology

It is considered that the control unit of a computer be constructed using two ways;
create micro-program that execute micro-instructions or build circuits for each
instruction execution. Micro-programmed control allows the implementation of
complex architectures more cost effective than hardwired control as the cost to expand
an instruction set is very small, only a few more micro-instructions for the control
store. Thus, it may be reasoned that moving subroutines like string editing, integer to
floating poinf number conversion and mathematical evaluations such as polynomial
evaluation tp control unit micro-program is more cost effective.

Code Density and Smaller Faster Programs

The memory was very expensive in the older computer. Thus there was a need of less
memory utilization, that is, it was cost effective to have smaller compact programs.
Thus, it was opined that the instruction set should be more complex, so that programs
are smaller. However, increased complexity of instruction sets had resulted in

. 85



‘

The Central
Processing Unit

86

instruction sets and addressing modes requiring more bits to represent them. It is
stated that the code compaction is important, but the cost of 10 percent more memory
is often far less than the cost of reducing code by 10 percent out of the CPU
architecture innovations. .

The smaller programs are advantageous because they require smaller RAM space.
However, today memory is very inexpensive, this potential advantage today is not so
compelling. More important, small programs should improve performance. How?
Fewer instructions mean fewer instruction bytes to be fetched.

However, the problem with this reasoning is that it is not certain that a CISC program
will be smaller than the corresponding RISC program. In many cases CISC program
expressed in symbolic machine language may be smaller but the number of bits of
machine code program may not be noticeably smalier. This may result from the
reason that in RISC we use register addressing and less instruction, which require
fewer bits in general. In addition, the compilers on CISCs often favour simpler
instructions, so that the conciseness of complex instruction seldom comes into play.

Let us explain this with the help of the following example:
Assumptions:

e The Complex Instruction is: Add C, A, B having 16 bit addresses and 8 bit data
operands '
All the operands are direct memory reference operands
The machine has 16 registers. So the size of a register address is =2 =16 =4
bits. '

¢ The machine uses an 8-bit opcode.

8 4 16
Load [rA [ A |
8 16 16 16 Load |rB | B
[Add | C [A |B | TAdd [rC [rA [B |
Store | 1C | C
Memory-to-Memory Register-to-Register
Instruction size (I) = 56 bits I = 104 bits
Data Size (D) =24 bits ' D = 24bits
Total Memory Load (M) = 80 bits M = 128 bits

(a) Add A & B to store resultin C

8 4 16
ILoad (rA | A
8 16 16 16 |Ioad (B | B
Add | C A B Add [C [B [1A |
Add [ A C D Load |rD D
Sub | D D B "Add_|rA [C |Rd
Sub rD | D | B
Store (D [D |
Memory-to-Memory Register-to-Register
Instruction size (I) = 168 bits I =172 bits
Data Size (D) = 72 bits D = 32bits
Total Meimory Load (M) = 240 bits M = 204 bits

(b) Execution of the Instruction Sequence: C=A+B,A=C+D,D=D-B

Figure 1: Program size for different Instruction Set Approaches



So, the expectation that a CISC will produce smalier programs may not be realised.

Support for High-Leve! Language

With the increasing use of more and higher level languages, manufacturers had
provided more powerful instructions to support them. It was argued that a stronger
mnstruction set would reduce the software crisis and would simplify the compilers.
Another important reason for such a movement was the desire to improve
pe/rformance.

However, even though the instructions that were closer to the high level languages
were implemented in Complex Instruction Set Computers (CISCs), still it was hard to
exploit these instructions since the compilers were needed to find those conditions that
exactly fit those constructs. In addition, the task of optimising the generated code to
minimise code size, reduce instruction execution count, and enhance pipelining is
-nuch more difficult with such a complex instruction set.

Another motivation for increasingly complex instruction sets was that the complex
HLL operation would execute more quickly as a single machine instruction rather
than as a series of more primitive instructions. However, because of the bias of
programmers towards the use of simpler instructtons, it may turn out otherwise. CISC
makes the more complex control unit with larger microprogram control store to
accommodate a richer instruction set. This increases the execution time for simpler
instructions.

Thus, it is far from clear that the trend to complex instruction sets is appropriate. This
has led a number of groups to pursue the opposite path.

5.2.3 High Level Language Program Characteristics

Thus, it is clear that new architectures should support high-level language
programming. A high-level language system can be implemented mostly by hardware
or mostly by software, provided the system hides any lower level details from the
programmer. Thus, a cost-effective system can be built by deciding what pieces of the
system shouid be in hardware and what pieces in software.

To ascertain the above, it may be a good idea to find program characteristics on
general computers. Some of the basic findings about the program characteristics are:

Variables Operations __ Procedure Calls

Integral Constants 15-25% | Simple assignment 35- Most time consuming
45% operation.

Scalar Variables 50-60%

*Looping 2-6% FACTS: Most of the

Array/ structure 20-30% procedures are called with

Procedure call 10-15% fewer than 6 arguments,
Most of these have fewer

IF 35-45% than 6 local variables
GOTO FEW

Others 1-5% -

Figure 2: Typical Program Characteristics

Observations /

e Integer constants appeared almost as frequently as arrays or structures.

Reduced Instruction
Set Computer
Architecture

87



The Central
Processing Unit

88

®  Most of the scalars were found to be local variables whereas most of the arrays or
structures were global variables.
Most of the dynamically called procedures pass lower than six arguments.

¢ The numbers of scalar variables are less than six.
A good machine design should attempt to optimize the performance of most time
consuming features of high-level programs.

e Performance can be improved by more register references rather than having more
memory references.

¢ There should be an optimized instructional pipeline such that any change in flow
of execution is taken care of.

The Origin of RISC

In the 1980s, a new philosophy evolved having optimizing compilers that could be
used to compile “normal” programming languages down to instructions that were as
simple as equivalent micro-operations in a large virtual address space. This made the
instruction cycle time as fast as the technology would permit. These machines should
have simple instructions such that it can harness the potential of simple instruction
execution in one cycle - thus, having reduced instruction sets — hence the reduced
instruction set computers (RISCs).

Check Your Progress 1

1.

List the reasons of increased complexity.

......................................................................................................................................

2. State True or False

a) The instruction cycle time for RISC is equivalent to CISC. [

b} CISC yields smaller programs than RISC, which improves its performance;
therefore, it is very superior to RISC. 1

¢) CISC emphasizes optional use of register while RISC does not. l:]

5.3 RISC ARCHITECTURE

Let us first list some important considerations of RISC architecture:

1. The RISC functions are kept simple unless there is a very good reason to do
otherwise. A new operation that increases execution time of an instruction by 10
per cent can be added only if it reduces the size of the code by at least 10 per cent.
Even greater reductions might be necessary if the extra modification necessitates a
change in design.

2. Micro-instructions stored in the control unit cannot be faster than simple
instructions, as the cache is built from the same technology as writable control
unit store, a simple instruction may be executed at the same speed as that of a
micro-instruction,

3. Microcode is not magic. Moving software into microcode does not make it better;
it just makes it harder to change. The runtime library of RISC has all the
characteristics of functions in microcode, except that it is easier to change.

4. Simple decoding and pipelined execution are more important than program size.
Pipelined execution gives a peak performance of one instruction every step. The
longest step determines the performance rate of the pipelined machine, so ideally
each pipeline step should take the same amount of time.

iy



Compiler should simplify instructions rather than generate complex instructions.
RISC compilers try to remove as much work as possible during compile time so
that simple instructions can be used. For example, RISC compilers try to keep —
operands in registers so that simple register-to-register instructions can be used.
RISC compilers keep operands that will be reused in registers, rather than
repeating a memory access or a calculation. They, therefore, use LOADs and
STORE:S to access memory so that operands are not implicitly discarded after
being fetched. (Refer to Figure 1(b)).

[hus, the RISC were designed having the following:

’ One instruction per cycle: A machine cycle is the time taken to fetch two
operands from registers, perform the ALU operation on them and store the
result in a register. Thus, RISC instruction execution takes about the same time
as the micro-instructions on CISC machines. With such simple instruction
execution rather than micro-instructions, it can use fast logic circuits for control
unit, thus increasing the execution efficiency further.

. Register-to-register operands: In RISC machines the operation that access
memories are LOAD and STORE. All other operands are kept in registers. This
design feature simplifies the instruction set and, therefore, simplifies the control
unit. For example, a RISC instruction set may include only one or two ADD
instructions (e.g. integer add and add with carry); on the other hand a CISC
machine can have 25 add instructions involving different addressing modes.
Another benefit is that RISC encourages the optimization of register use, so that
frequently used operands remain in registers.

. Simple addressing modes: Another characteristic is the use of simple
addressing modes. The RISC machines use simple register addressing having
displacement and PC relative modes. More complex modes are synthesized in
software from these simple ones. Again, this feature also simplifies the
instruction set and the control unit.

° Simple instruction formats: RISC uses simple instruction formats. Generally,
only one or a few instruction formats are used. In such machines the instruction
length is fixed and aligned on word boundaries. In addition, the field locations
can also be fixed. Such an instruction format has a number of benefits. With
fixed fields, opcode decoding and register operand accessing can occur in
parallel. Such a design has many advantages. These are:

. It simplifies the control unit ,
. Simple fetching as memory words of equal size are to be fetched
° Instructions are not across page boundaries.

Thus, RISC is potentially a very strong architecture. It has high performance potential
and can support VLSI implementation. Let us discuss these points in more detail.

. Performance using optimizing compilers: As the instructions are simple the
compilers can be developed for efficient code organization also maximizing
register utilization etc. Sometimes even the part of the complex instruction can
be executed during the compile time.

] High performance of Instruction execution: While mapping of HLL to
machine instruction the compiler favours relatively simple instructions. In
addition, the control unit design is simple and it uses little or no micro-
instructions, thus could execute simple instructions faster than a comparable
CISC. Siniple instructions support better possibilities of using instruction
pipelining,

Reduced Instruction
Set Computer
Architecture

89



90

The Central
Processing Urit

J VLSI Implementation of Control Unit: A major potential benefit of RISC is
the VLSI implementation of microprocessot. The VLSI Technology has
reduced the delays of transfer of information among CPU components that
resulted in a microprocessor. The delays across chips are higher than delay
within a chip; thus, it may be a good idea to have the rare functions built on a
separate chip. RISC chips are designed with this consideration. In general, a
typical microprocessor dedicates about half of its area to the control store in a
micro-programmed control unit. The RISC chip devotes only about 6% of its
area to the control unit. Another related issue is the time taken to design and
implement a processor. A VLSI processor is difficult to develop, as the designer
must perform circuit design, layout, and modeling at the device level. With
reduced instruction set architecture, this processor is far easier to build.

5.4 THE USE OF LARGE REGISTER FILE

In general, the register storage is faster than the main memory and the cache. Also the
register addressing uses much shorter addresses than the addresses for main memory
and the cache. However, the numbers of registers in a machine are less as generally
the same chip contains the ALU and control unit. Thus, a strategy is needed that will
optimize the register use and, thus, allow the most frequently accessed operands to be
kept in registers in order to minimize register-memory operations.

Such optimisation can either be entrusted to an optimising complier, which requires
techniques for program analysis; or we can follow some hardware related techniques.
The hardware approach will require the use of more registers so that more variables
can be held in registers for longer periods of time, This technique is used in RISC
machines.

On the face of it the use of a large set of registers should lead to fewer memory
accesses, however in general about 32 registers were considered optimum. So how
does this large register file further optimize the program execution?

Since most operand references are to local variables of a function in C they are the
obvious choice for storing in registers. Some registers can also be used for global
variables. However, the problem here is that the program follows function call - return
so the local variables are related to most recent local function, in addition this call -
return expects saving the context of calling program and return address. This also
requires parameter passing on call. On return, from a call the variables of the calling
program must be restored and the results must be passed back to the calling program.

RISC register file provides a support for such call- returns with the help of register
windows. Register files are broken into multiple small sets of registers and assigned to
a different function. A function call automatically changes each of these sets. The use
from one fixed size window of registcrs to another, rather than saving registers in
memory as done in CISC. Windows for adjacent procedures are overlapped. This
feature allows parameter passing without nicving the variables at all. The following
figure tries to explain this concept:

Assumptions.
Register file contains 138 registers. Let them be called by register number 0 — 137.

The diagram shows the use of registers: when there is call to function A (f,) which
calls function B (fg) and function B calls function C (fc).



Registers Nos. | Used for
0-9 Global variables
required by f,, fz, and | Function A Function B | Function C
fc
10 - 83 Unused
84 -89 Used by parameters of Temporary |
(6 Registers) fc that may be passed variables of
to next call function C
90 - 99 Used for local variable Local
(10 Registers) | of fc variables of
function C
100 — 105 Used by parameters Temporary | Parameters
(6 Registers) that were passed from variables of | of function
fy > fc function B C
106 — 115 Local variables of fg Local T
(10 Registers) variables of
function B
116 — 121 Parameters that were Temporary | Parameters
(6 Registers) passed from f, to fy variables of | of function
functonA | B
122 - 131 Local variable of f, Local
(10 Registers) | variables of
function A
132 - 138 Parameter passed to f, | Parameters
(6 Registers) of function
\; A

Figure 3: Use of three Overlapped Register Windows

Please note the functioning of the registers: at any point of time the global registers
and only one window of registers is visible and is addressable as if it were the only set
of registers. Thus, for programming purpose there may be only 32 registers. Window
in the above example although has a total of 138 registers. This window copsists of:

Global registers which are shareable by all functions.

Parameters registers for holding parameters passed from the previous function to
the current function. They also hold the results that are to be passed back.

Local registers that hold the local variables, as assigned by the compiler.
Temporary registers: They are physically the same as the parameter registers at
the next level. This overlap permits parameter passing without the actual
movement of data.

But what is the maximum function calls nesting can be allowed through RISC? Let us
describe it with the help of a circular buffer diagram, technically the registers as above
have to be circular in the call return hierarchy.

This organization is shown in the following figure. The register buffer is filled as
function A called function B, function B called function C, function C called function
D. The function D is the current function. The current window pointer (CWP) points
to the register window of the most recent function (function D in this case). Any
register references by a machine instruction is added with the contents of this pointer
to determine the actual physical registers. On the other hand the saved window
pointer identifies the window most recently saved in memory. This action will be
needed if a further call is made and there is no space for that call. If function D now
calls function E arguments for function E are placed in D’s temporary registers
indicated by D temp and the CWP is advanced by one window.

Reduced Instruction

Set Computer
Architecture

91



92

The Central
Processing Unit

Saved wandow

pointer \

A.in: Input rcgister p
of function A

Aloc: Local variables of function A

B.in: Paramcters with which
function B-is 1o be called B.in )1 is samc
as A tcmp which arc parameters passed
by function A to function B

Current window
poier

Figure 4: Circular-.Buffer Organization of Overlapped Windows

If function E now makes a call to function F, the call cannot be made with the current
status of the buffer, unless we free space equivalent to exactly one window. This
condition can easily be determined as current window pointer on incrementing will be
equal to saved window pointer. Now, we need to create space; how can we do it? The
simplest way will be to swap F, register to memory and use that space. Thus, an N
window register file can support N -1 level of function calls.

Thus, the register file, organized in the form as above, is a small fast register buffer
that holds most of the variables that are likely to be used heavily. From this point of
view the register file acts almost like a cache memory.

So let us find how the two approaches are different:

Characteristics of large-register-file and cache organizations

Large Register File Cache
Hold local variables for almost all Recently used local variables are fetched
functions. This saves time, from main memory for any further use.

Dynamic use optimises memory. '

The variables are individual. The transfer from memory is block wise.
Global variables are assigned by the It stores recently used variables. It cannot
compilers. keep track of future use.
Save/restore needed only after the Save/restore based on cache replacement
maximum call nesting is over (that is = — | algorithms.
1 open windows) .
It follows faster register addressing. | It is memory addressing.

All but one point above basically show comparative equality. The basic difference is
due to addre...ug ov-rhead of the two approaches. :

The following figure shows the difference. Small register (R) address is added with
cverent window Pointer W#4. This generates the address in register file, which is
decoded by decoder for register access. On the other hand Cache reference will be
generated from a long memory address, which first goes through comparison logic to
ascertain the presence of data, and if the data is present it goes through the select
circuit. Thus, for simple variables access register file is superior to cache memory.




Reduced Instruction
Set Computer
Architecture

However, even in RISC computer, performance can be enhanced by the addition of
instruction cache.

Instroc o | R Registers

Wi Decoder © p———————Data

(a) Windows based Register file

Instruction

l A Cache

Tags | Data (A>>R)

b

-__-———\ilect /

——» Data
(b) Cache Reference

Figure 5: Referencing a local Simple Variables

Check Your Progress 2
1. State True or False in the context of RISC architecture: T|F
a. RISC has a large register file so that more variables can be stored in register
or longer periods of time. : ]
b. Only global variables are stored in registers. ’ D

c. Variables are passed as parameters in registers using temporary registers in a
window.

d. Cache is superior to a large register file as it stores most recently used local

scalars. » [:]

2. An overlapped register window RISC machine is having 32 registers. Suppose 8
of these registers are dedicated to global variables and the remaining 24 are split
for incoming parameters, local and scalar variables and outgoing parameters.
What are the ways of allocating these 24 registers in the three categories?

.........................................................................................................................
.........................................................................................................................

.........................................................................................................................

5.5 COMMENTS ON RISC

Let us now try and answer some of the comments that are asked for RISC
architectures. Let us provide our suggestions on those.

93



The Central
Processing Unit

94

CISCs provide better support for high-level languages as they include high-level
language constructs such as CASE, CALL etc.

Yes CISC architecture tries to narrow the gap between assembly and High Level
Language (HLL); however, this support comes at a cost. In fact the support can be
measured as the inverse of the costs of using typical HLL constructs on a particular
machine. If the architect provides a feature that looks like the HLL construct but runs
slowly, or has many options, the compiler writer may omit the feature, or even, the
HLL programmer may avoid the construct, as it is slow and cumbersome Thus, the
comment above does not hold.

It is more difficult to write a compiler for a RISC than a CISC.

The studies have shown that it is not so due to the following reasons:

If an instruction can be executed in more ways than one, then more cases must be
considered. For it the compiler writer needed to balance the speed of the compilers to
get good code. In CISCs compilers need to analyze the potential usage of all available
instruction, which is time consuming. Thus, it is recommended that there is at least
one good way to do something. In RISC, there are few choices; for example, if an
operand is in memory it must first be loaded into a register. Thus, RISC requires
simple case analysis, which means a simple compiler, although more machine
instructions will be generated in each case.

RISC is tailored for € language and will not work well with other high level
languages.

‘But the studies of other high level languages found that the most frequently executed

operations in other languages are also the same as simple HLL constructs found in C,
for which RISC has been optimized. Unless a HLL changes the paradigm of
programming we will get similar result.

The good performance is due to the overlapped register windows; the reduced
instruction set has nothing to do with it.

Certainly, a major portion of the speed is due to the overlapped register windows of
the RISC that provide support for function calls. However, please note this register
windows is possible due to reduction in control unit size from 50 to 6 per cent. In
addition, the control is simple in RISC than CISC, thus further helping the simple
instructions to execute faster.

5.6. RISC PIPELINING

Instruction pipelining is often used to enhance performance. Let us consider this in the
context of RISC architecture. In RISC machines most of the operations are register-to-
register. Therefore, the instructions can be executed in two phases:

F: Instruction Fetch to get the instruction.
E: Instruction Execute on register operands and store the results in register,

In general, the memory access in RISC is performed through LOAD and STORE
operations. For such instructions the following steps may be needed:

F: Instruction Fetch to get the instruction
E: Effective address calculation for the desired memory operand
D: Memory to register or register to memory data transfer through bus.



Let us explain pipelining in RISC with an example program execution sample. Take Reduced Instruction

the following program (R indicates register). S:,S,:)izz::::
LOADR, (Load from memory location A)
LOAD Rp (Load from memory location B)

ADD Rc R4, R (Rc=Ra+Ryp))

SUB RD , RA ’ RB (RD = RA - RB)

MUL R, Rc, Rp (Re=R¢ x Rp)

STOR R (Store in memory location C)
Return to main.

Load R, € M(A) {F |E | D

Load Rg € M(B) F|E|D

Add Rc€ R, “Rg F|E

Sub RD < RA - RB F E

Mul Rg € RCXRD F | E

Stor Rg PM(C) | Time «-emememeeemer > " 1E D

Return Time = 17 units _ F|E]

I 23 45 67 8 9 1011121314 15 1617

Figure 6: Sequential Execution of Instructions

Figure 7 shows a simple pipelining scheme, in which F and E phases of two different
instructions are performed simultaneously. This scheme speeds up the execution rate
of the sequential scheme. ‘

Load R € M(A) F |E]|D

Load Rg € M(B) F E | D

Add R¢c € Ra+Rp F

o m|

Sub RD < RA -Rp

n|m

Mul Rg € Rcx Rp E

Stor Rg> M(C) F|E|D|
F

Return J iﬂ

Time 1 2 3 4 56 7 8 910 11
Total time = 11 units

Figure 7: Two Way Pipelined Timing

Please note that the pipeline above is not ruhning at its full capacity. This is because
of the following problems:

¢« We are assuming a single port memory thus only one memory access is allowed at
a time. Thus, Fetch and Data transfer operations cannot occur at the same time.
Thus, you may notice blank in the time slot 3, 5 etc. -

s The last instruction is an unconditional jump. Please note that after this instruction
the next instruction of the calling program will be executed. Although not visible
in this examnple a branch instruction interrupts the sequential flow of instruction
execution. Thus, causing inefficiencies in the pipelined execution.

This pipeline can simply be improved by allowing two memory accesses at a time.

Thus, the modified pipeline would be:

The pipeline may suffer because of data dependencies and branch instructions )
penalties. A good pipeline has equal phases.

95



The Central
Processing Unit

Load Ry € M(A) F|E|D
Load Rg € M(B) F({E|D
[ AddRc €R, +Rg F|E
LSub Rp € R,-Rp F
" Mul Rg=R¢ * Rp F|E|
Stor Rg 2 M(C) Time ----- > F E |D
Return Time = 8§ units F | E

Figure 8: Three-way Pipelining Timing
Optimization of Pipelining

RISC machines can employ a very efficient pipeline scheme because of the simple
and regular instructions. Like all other instruction pipelines RISC pipeline suffer from
the problems of data dependencies and branching instructions. RISC optimizes this
problem by using a technique called delayed branching.

One of the common techniques used to avoid branch penalty is to pre-fetch the branch
destination also. RISC follows a branch optimization technique called delayed jump
as shown in the example given below:

Load Ry € M(A) F
Load R;; € M(B) F|E | D
Add Rc €Rx+ Rg \ F [E
Sub Rp € Ry-Rp F |E

If Rp< 0 Return ;
Stor R¢ 2 M(C)
Return . F |E

(a) The instruction “If Ry < 0 Return” may cause pipeline to empty

Load Ry € M(A) F|E |D
Load Ry € M(B) F
AddRc€ Ry+Rp F
ﬁbRgeRA-RB | F |E
If Rp < 0 Return F
NO Operation F |E

Stor Re—> M(C) Or , F|E|D
Return as the case may be

Return F | E

tm
C

[es]

(b) The No operation instruction causes decision of the If instruction known, thus
correct instruction can be fetched.



Load R, €M(A) |F |E |D

Load Rg € M(B)~- F

t
)

Sub R, € R,- Ry FE

If Rp < 0 Return F |E

AddRc € R, + Ry | F

Stor Re > M(C)

Return

(c) The branch is calculated before, thus the pipeline need not be emptied. Thiis is

delayed branch.

Figure 9: Delayed Branch

Finally, let us summarize the basic differences between CISC and RISC architecture.

The following table lists these differences:

CISC

RISC

1. Large number of instructions — from
120 to 350.

. Relatively fewer instructions - less

than 100.

2. Employs a variety of data types and a
large number of addressing modes.

. Relatively fewer addressing modes.

3. Variable-length instruction formats.

. Fixed-length instructions usually 32

bits, easy to decode instruction format.

4. Instructions manipulate operands
residing in memory.

. Mostly register-register operations.

The only memory access is through
explicit LOAD/STORE instructions.

5. Number of Cycles Per Instruction
(CPI) varies from 1-20 depending upon
the instruction.

. Number of CPI is one as it uses

pipelining. Pipeline in RISC is
optimised because of simple
instructions and instruction formats.

6. GPRs varies from 8-32. But no support
is available for the parameter passing
and function calls.

. Large number of GPRs are available

that are primarily used as Global
registers and as a register based
procedural call and parameter passing
stack, thus, optimised for structured
programming.

7. Microprogrammed Control Unit.

. Hardwired Control Unit.

Check Your Progress 3

1. What are the problems, which prevent RISC pipelining to achieve maximum

speed?

..............................................................

Reduced Instruction
Set Computer
Architecture

97



The Central

98

Processing Unit

3. What are the problems of RISC architecture? How are these problems
compensated such that there is no reduction in performance?

.........................................................................................................................

.........................................................................................................................

5.7 SUMMARY

RISC represents new styles of computers that take less time to build yet provide a
higher performance. While traditional machines support HLLs with instruction that
look like HLL constructs, this machine supports the use of HLLs with instructions that
HLL compilers can use efficiently. The loss of complexity has not reduced RISC’s
functionality; the chosen subset, especially when combined with the register window
scheme, emulates more complex machines. It also appears that we can build such a
single chip computer much sooner and with much less effort than traditional
architectures.

Thus, we see that because of all the features discussed above, the RISC architecture
should prove to be far superior to even the most complex CISC architecture.

In this unit we have also covered the details of the pipelined features of the RISC
architecture, which further strengthen our arguments for the support of this
architecture.

5.8 SOLUTIONS/ ANSWERS

Check Your Progress 1

1.

Speed of memory is slower than the speed of CPU.
Microcode implementation is cost effective and easy.
The intention of reducing code size.

For providing support for high-level language.

a) False
b) False
c¢) False

Check Your Progress 2

1.
(@) True
(b) False
{(c) True
(d) False

2. Assume that the number of incoming parameters is equal to the number of
outgoing parameiers. :

Therefore, Number of locals = 24 —~(2 x Number of incoming parameters)
Return address is also counted as a parameter, therefore, number of incoming

parameters is more than or equal to 1 or in other terms the possible combination,
are:



on W) M th AW N

Inconiing Outgoing
Parameter Parameter
Registers Registers
1 1

2

3

4

5

6

7

8
S 9
10 10
11 11
12 12
Check Your Progress 3

1.

Reduced Instruction
Set Computer

No. of Local Architecture

Registers
22
20
18

'The following are the problems:

It has a single port memory reducing the access to one device at a time -

Branch instruction

The data dependencies between the instructions

. It can be improved by:

allowing two memory accesses per phase
introducing three phases of approximately equal duration in pipelining
e causing optimized delayed jumps/loads etc.

The problems of RISC architecture are:

More instructions to achieve the same amount of work as CISC.

Higher instruction traffic

Howevr, the cycle time of one instruction per cycle and instruction cache in
the chip mx* compensate for these problems.

99





