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2.0 INTRODUCTION 

Let us start with thinking about how to assess the efficiency of a computer 
programme. For this we would need to estimate the number of times each procedure is 
called during the execution of the programme. How would we do this? The theory of 
combinatorics helps us in this matter, as you will see while studying this unit.   
 
Combinatorics deals with counting the number of ways in which objects can be 
arranged according to some pattern (listing). Mostly, it deals with a finite number of 
objects and a finite number of ways of arranging them. Sometimes an infinite number 
of objects and infinite number of ways in which they can be arranged are also 
considered. However, in this unit and block, we shall restrict our discussion to a finite 
number of objects.   
 
We start our discussion in Sec. 2.2, with two counting principles. These principles 
help us in counting the number of ways in which a task can be done when it consists 
of several subtasks, and there are many possible ways of doing the subtasks.  
 
In Sec. 2.3 we look at arrangements of objects in which the order matters. Such 
arrangements are called permutations. Here we look at various linear and circular 
permutations, and how to count their number in a given situation.  
 
In Sec. 2.4, we consider arrangements of objects in which the order does not matter.  
Such arrangements are called combinations. We will consider situations that require 
us to count combinations. You will see that most of these situations require us to 
apply the multiplication principle also.  
 
In the next section, Sec. 2.5, we consider binomial and multinomial coefficients. We 
see how they are related to the objects studied in Sec. 2.4.  
 
Finally, in Sec. 2.6, we consider the applications of what we have presented in the rest 
of the unit, for finding the probability of the occurrence of an event. As you will see, 
this application is natural, since we use similar counting arguments for obtaining 
discrete probabilities. This discussion will be useful for you, for instance, in coding 
theory as well as in designing reliable computer systems.  
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We continue our study of combinatorics in the next unit. We also have a section of 
miscellaneous exercises at the end of the block of which several are based on this unit.  
Doing these exercises, and every exercise given in the unit, will help you achieve the 
following objectives of this unit.  



 
Basic Combinatorics 2.1 OBJECTIVES 

After going through this unit, you should be able to:  

• explain the multiplication and addition principles, and apply them; 
• differentiate between situations involving permutations and those involving 

combinations;  
• perform calculations involving permutations and combinations; 
• prove and use formulae involving binomial and multinomial coefficients; 
• apply the concepts presented so far for calculating combinatorial probabilities. 
 

2.2 MULTIPLICATION AND ADDITION 
PRINCIPLES 

Let us start with considering the following situation: Suppose a shop sells six styles of 
pants. Each style is available in 8 lengths, six waist sizes, and four colours. How many 
different kinds of pants does the shop need to stock? 

There are 6 possible types of pants; then for each type, there are 8 possible length 
sizes; for each of these, there are 6 possible waist sizes; and each of these is available 
in 4 different colours. So, if you sit down to count all the possibilities, you will find a 
huge number, and may even miss some out!  However, if you apply the multiplication 
principle, you will have the answer in a jiffy!   

So, what is the multiplication principle? There are various ways of explaining this 
principle. One way is the following:  

Suppose that a task/procedure consists of a sequence of subtasks or steps, say, Subtask 
1, Subtask 2,…, Subtask k. Furthermore, suppose that Subtask 1 can be performed in 
n1, ways, Subtask 2 can be performed in n2 ways after Subtask 1 has been performed, 
Subtask 3 can be performed in n3 ways after Subtask 1 and Subtask 2 have been 
performed, and so on. Then the multiplication principle says that the number of 
ways in which the whole task can be performed is n1.n2….nk.  

Let us consider this principle in the context of boxes and objects filling them. Suppose 
there are m boxes. Suppose the first box can be filled up in k(1) ways. For every way 
of filling the first box, suppose there are k(2) ways of filling the second box. Then the 
two boxes can be filled up in k(1).k(2) ways. In general, if for every way of filling the 
first (r − 1) boxes, the rth box can be filled up in k(r) ways, for r = 2,3,…, m, then the 
total number of ways of filling all the boxes is k(1).k(2)… k(m).   

So let us see how the multiplication principle can be applied to the situation above 
(the shop selling pants). Here k(1) = 6, k(2) = 8, k(3) = 6 and k(4) = 4. So, the 
different kinds of pants are 6 × 8 × 6 × 4 = 1152 in number. 

Let’s consider one more example.  
 
Example 1: Suppose we want to choose two persons from a party consisting of 35 
members as president and vice-president. In how many ways can this be done? 
 
Solution: Here, Subtask 1 is ‘choosing a president’. This can be done in 35 ways.  
Subtask 2 is ‘choosing a vice-president’. For each choice of president, we can choose 
the vice-president in 34 ways. Therefore, the total number of ways in which Subtasks 
1 and 2 can be done is 35 × 34 = 1190.  

* * * 
There is another fundamental principle called the addition principle. This is applied 
in situations like the following one:  

 28
 



 
Combinatorics – An 

Introduction 
Suppose that a task consists of performing exactly one subtask from among a 
collection of disjoint (mutually exclusive) subtasks, say, Subtask 1, Subtask 2,…., 
Subtask k. (i.e., the task is performed if either Subtask 1 is performed, or Subtask 
2,…, or Subtask k is performed.) Further, suppose that Subtask i can be performed in 
ni ways, i = 1,2,…, k. Then, the number of ways in which the task can be performed is 
the sum n1+n2+…+nk. 
 
Let us consider an example of its application.  
 
Example 2: There are three political parties, P1, P2 and P3.  The party P1 has 4 
members, P2 has 5 members and P3 has 6 members in an assembly. Suppose we want 
to select two persons, both from the same party, to become president and vice-
president. In how many ways can this be done?  
 
Solution: From P1, we can do the task in 4 × 3 = 12 ways, using the multiplication 
principle. From P2, it can be done in 5 × 4 = 20 ways. From P3 it can be done in 6 × 5 
= 30 ways. So, by the addition principle, the number of ways of doing the task is      
12 + 20 + 30 = 62.  

  
* * * 

 
Though both these principles seem simple, quite a number of combinatorial 
enumerations can be done with them. For instance, what we see from Example 2 is 
that the addition principle helps us to count all possible arrangements grouped into 
mutually exclusive and exhaustive classes.   
 
Why don’t you try a few exercises that involve the use of these principles now? 
 

E1) Give a situation related to computing in which the addition principle is used, 
and one in which the multiplication principle is used.  

 
E2) Find the number of words of length 4, meaningful or not, made with the letters 

a,b,…, j.  
 
E3) If n couples are at a dance, in how many ways can the men and women be 

paired for a single dance? 
 
E4) How many integers between 100 and 999 consist of distinct even digits? 
 
E5) Consider all the numbers between 100 and 999 that have distinct digits. How 
 many of them are odd? 

Let us now consider certain arrangements of objects, in which the order in which they 
are arranged matters.  
 

2.3 PERMUTATIONS 

Suppose we have 15 books that we want to arrange on a shelf.  How many ways are 
there of doing it? Using the multiplication principle, you would say - 

n! denotes ‘n factorial’, 
which means  
n × (n − 1) × . × 2 × 1  
for any n∈N.) 15 × 14 × 13 × ….. 2 × 1 = 15!  

Each of these arrangements of the books is a permutation of the books. Let us define 
this term formally.  
 
Definition: An arrangement of a set of n objects in a given order is called a 
permutation of the objects (taken altogether at a time).   
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Basic Combinatorics An ordered arrangement of the n objects, taking r at a time, (where r ≤ n) is called a 

permutation of the n objects taking r at a time.  The total number of such 
permutations is denoted by P(n,r).   
 
As an example, let us consider picking out books, three at a time, from the shelf of 15 
books. The first book can be chosen in 15 ways, the next in 14 ways, and the third in 
13 ways. So the multiplication principle tells us that the total number of permutations 
of the 15 books taken 3 at a time is P(15,3) = 15 × 14 × 13.  
 
Again, consider the permutations of a,b,c,d, taken 2 at a time. These are ab, ba, ac, ca, 
ad, da, bc, cb, bd, db, cd, dc. (Note that ab and ba are considered different even though 
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Other notations used for
n n
they consist of the same two objects.) Or, we can argue combinatorically as above:  
The first letter can be chosen in 4 ways, and then the next letter can be chosen. We 
can list out all the cases in 3 ways. So, the total number of permutations are P(4,2) = 4 
× 3 = 12.   

P(n,r) are Pr, nPr. ,Pr

 
Now, is there a formula for finding the value of P(n,r)? This is what the following 
theorem tells us.    
 
Theorem 1: The number of permutations of n objects, taken r at a time, where  0 ≤ r ≤ 

n, is given by P(n,r) =  
)!rn(

!n
−

    

 
Consider r boxes arranged in a line. Choose one object out of n and place it in the first 
box. This can be done in n ways. Then from the remaining (n−1) objects choose one 
and place it in the second box. The first two boxes can be filled in n(n − 1) ways. We 
continue this operation till the rth box is filled. So, by the multiplication principle, the 
total number of ways of doing this is n(n − 1) (n − 2) …(n − r+1).    

P(n,r) = n(n −1)…(n−r+1).  
 = n(n −1)…( (n − r + 1)( (n − r)( (n − r − 1)…3.2.1 
 = (n −r)…( (n − r − 1) …3.2.1 

 = n!/(n − r)! 
 
Proof: In particular, Theorem 1 tells us that the number of permutation of n objects, 
taken all at a time, is given by  We define 0! = 1 

P(n,n) = n! 
 
and P(n, 0) = 1  ∀n∈N. 
 
So, for example, by Theorem 1 we can find  

P(6,4) = 6.5.4.3 = 6!/(6 − 4)! And P(6,0) = 1.  
 
Why don’t you try some exercises now? 
 

E6) If m and n are positive integers, show that (m+n)! ≥ m! + n!.  
 
E7) How many 3-digit numbers can be formed from the 6 digits 2,3,5,7,8,9 if 

repetitions are not allowed?  How many of these numbers are less than 400?  
How many are even? 

 
E8) How many ways are there to rank n candidates for the job of chief engineer?  In 

how many rankings will Ms. Sheela be in the second place.   
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In defining the concept of permutation we assumed that the objects were 
distinguishable. What does this mean, and what happens if we remove this 
assumption? Let’s see.  
 
2.3.1 Permutation of Objects Not Necessarily Distinct 

We have shown that there are P(n,r) ways to choose r objects from a set of n distinct 
objects and arrange them in linear order.  Here we consider the same problem with 
the relaxed condition that some of the objects in the collection may not be 
distinguishable. 

For example, we consider permutations of the letters of the word DISTINCT. Here 
there are 8 letters of which 2 are I, 2 are T, and three are 4 other different letters. To 
count the permutations in such a situation, we have the following result.    
 
Theorem 2: Suppose there are n objects classified into k distinct types, with m1 
identical objects of the first type, m2 identical objects of the second type,…, and mk 
identical objects of the kth type, where m1+m2+...+mk = n. Then the number of distinct 

arrangements of these n objects, denoted by P(n; m1, m2,..mk) is .
!m!...m!m

!n

k21
 

 
Proof: Let x be the number of such permutations. If the objects of Type i are 
considered distinct, then they can be arranged amongst themselves in m1! ways, where 
i = 1,2,…, k. Therefore, by the multiplication principle, the total number of 
permutations of these n distinct objects, taken all at a time, is xm1!m2!…mk!.     
 
But this is precisely n! when there are n distinct objects.   
 
Hence, xm1!m2!…mk! = n!, that is, x = n!/m1!m2!…mk!  
 
So for example, this result tells us that the number of distinct 8 letter words, not 
necessarily meaningful, that we can make from the letter of the word “DISTINCT” is 

.14
!1!1!1!1!2!2

!8
=  

  
Here are some related exercises.  
 

E9) How many permutations are there of the letters, taken all at a time, of the words 

  (i) ASSESSES, (ii) PATTIVEERANPATTI?                                     
 
E10) How many licence plates can be made if each should have 3 letters of the 

English alphabet with no letter repeated?  What will be the answer if the letters 
can be repeated? 

So far, we have considered permutations of objects as linear arrangements of objects; 
this means that we visualize arrangements of objects in a line.  But there is a variant in 
which the objects are arranged along the circumference of a circle.  Let us consider 
that now. 
 
2.3.2 Circular Permutation   

Consider an arrangement of 4 objects, a,b,c,d as in Fig. 1.  We observe the objects 
in the clockwise direction.  On the circumference there is no preferred origin, and 
hence the permutations abcd, bcda, cdab, dabc will look exactly alike. So, each 
linear 
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permutation, when treated as a circular permut
objects are placed in a circular arrangement, ea
times.  So, if we consider all the n! permutatio
will be indistinguishable from the (n−1) others
objects in the same order.  So the number of di
= (n−1)!. Thus, we have shown that the numb
things, taken all at a time, is (n−1)!. 
 
Let us consider some examples.  
 
Example 3: In how many distinct ways is it po
table?   
 
Solution: Clearly we need the number of circu
answer is 7! = 5040.  

* * * 
 
Example 4: In the preceding question, what w
among the eight persons  

(i)    must not sit in adjacent seats? 

(ii)   must sit in adjacent seats 
 
Solution: To answer (i), let us first solve (ii) fr
of cases in which the pair of persons sit togeth
one unit, then we have the circular permutation
that this is the answer for (ii).)  But even as a u
Hence the required answer is 2(6!). Now to an
possibilities from the total number of ways of 
= 3600.   

* * * 
 
Example 5: Suppose there are five married co
sit about a round table so that neither two men
number of such circular arrangements.  
 
Solution: Five females can be made to sit abou
One male can be seated in between two female
they can be made to sit in 5! ways. By the mul
ways of such seating arrangements is 4! × 5! =

 

* * * 
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Example 6: Consider seven people seated about a round table.  How many circular 
arrangements are possible if at least one of them will not have the same neighbours in 
any two arrangements? 
 
Solution:  The two distinct arrangements in Fig. 2 show that each has the same 
neighbours.   
 

d

e

a a 

•b 

c 

e ••

•

 
 
 
 
 
 
 
 d 

 
 

2  
 

Hence, the total number of circular arrangements = (7−1)! ×

 
* * * 

 
You may try the following exercise.  
 

E11) If there are 7 men and 5 women, how many circular a
in which women do not sit adjacent to each other? 

Permutations apply to ordered arrangement of objects. Wha
matter? Let’s see.  
 

2.4 COMBINATIONS 

Let’s begin by considering a situation where we want to cho
faculty members from a group of seven faculty members.  I
can this be done?  Here order doesn’t matter, because choos
as choosing F2, F1, F3, and so on.  (Here Fi denotes the ith fa
every choice of members, to avoid repetition, we have to di

number would be .
!4!3

!7
!3

567
=

××  

 
More generally, suppose there are n distinct objects and we
where r ≤ n, where the order of the objects in the selection
called a combination of n things taken r at a time.  The num
is represented by nCr, nCr, C  or C (n, r).  We will use 
conformity with the notation P(n, r) for permutations.  We r
to emphasize the fact that only choice is involved but not o

)(, n
r

n
r

 
In the example that we started the section with, you saw tha

combinations was 7!/3!4!, i.e., .
!3

)3,7(P   In fact, this relation

P(n, r) is true in general. We have the following result.   
 
Theorem 3: The number of combinations of n objects, take
0 ≤ r ≤ n is given by  
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C(n, r) = 
!r)!rn(

!n
!r

)r,n(P
−

= . 

 
Proof: C(n, r) counts the number of ways of choosing r out of n distinct objects  
without regard to the order. Any one of these choices is simply a subset of r objects of 
the set of n objects we have. Such a set can be ordered in r! ways. Thus, to each 
combination, there corresponds r! permutations. Hence there are r! times as many 
permutations as there are combinations. Hence, by the multiplication principle, we get  

P(n, r) = r! C(n,r)   
 

Therefore, C(n,r) = .
!r)!rn(

!n
!r

)r,n(P
−

=  

 
Using Theorem 3, we can very quickly find out, for instance, how many ways there 

are of choosing 2 rooms out of 20 rooms offered. This is C(20,2) = .190
!2!18

!20
=  

 
Now, to find C(20,2), I took a short cut.  I cancelled 18! From the number and 

denominator.  In practice, I only needed to calculate .
12
1920

×
×  This practice is useful, 

in general, i.e.,  we use the identity C(n, r) = 
factorsr)...1r(r
factorsr)...1n(n

−
−  for calculations. In 

fact, sometimes r is much larger than n − r, in which case we cancel r!. This is also 
what the following result suggests.   
 
Theorem 4: C(n, r) = C(n, n − r), for 0 ≤ r ≤ n, n∈N.  
 
Proof 1: For every choice of r things from n things, there uniquely corresponds a 
choice of n − r things from those n objects, which are the unchosen objects. This one-
to-one correspondence shows that these numbers must be the same. This proves the 
theorem.   

Proof 2: C(n, r) = ).rn,n(C
)!rnn()!rn(

!n
!r)!rn(

!n
−=

−−−
=

−
 

 
Because of these two theorems we have, for instance, 

C(n, n) = C(n, 0) = P(n, 0) = 1.  C(n, 1), and = C(n, n−1) = P(n, 1) = n.  

 
The numbers C(n, r) are also called the binomial coefficients as they occur as the 
coefficients of xr in the expansion of (1+x)n in ascending powers of x, as you will see 
in Sec. 1.5.  At this stage, let us consider some examples involving C(n, r).   
 
Example 7:  Evaluate C(6, 2), C(7, 4) and C(9, 3).  
 

Solution: C(6, 2) = .  84
1.2.3
7.8.9)3,9(Cand,35

1.2.3
5.6.7)4,7(C,15

1.2
5.6

=====

 
Example 8:  Find the number of distinct sets of 5 cards that can be dealt from a deck 
of 52 cards.  
 
Solution: The order in which the cards are dealt is not important. So, the required  

number is C(52, 5) = .  960,598,2
12345

4849505152
!47!5

!52
=

××××
××××

=
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Example 9: Suppose a valid computer password consists of 8 characters, the first of 
which is the digit 1, 3 or 5. The rest of the 7 characters are either English alphabets or 
a digit.  How many different passwords are possible? 
 
Solution: Firstly, the initial character can be chosen in C(3, 1) ways. Now, there are 
26 alphabets and 10 digits to choose the rest of the characters from, and repetition is 
allowed. So, the total number of possibilities for these characters is (26+10)7.  
 
Therefore, by the multiplication principle, the number of passwords possible are  
C(3, 1).367. 
 
Here are some exercises now.  
 

E12) At a certain office, a committee consisting of one male and one female worker 
is to be constituted from among 12 men and 15 women workers.  In how many 
distinct ways can this be done?   

 
E13) In how many ways can a prize winner choose any 3 CDs from the ‘Ten Best’ 

list? 
 
E14)  How many different 7-person committees can be formed, each containing 3 

women and 4 men, from a set of 20 women and 30 men? 

So far we have been considering combinations of distinct objects. Let us now look at 
combinations in which repetitions are allowed. We start with considering the 
following situations.    
 
Suppose five friends stop at a sweet shop where each of them has one of the 
following: a samosa, a dosa, and a vada.  The order of consumption does not matter.  
How many different purchases are possible?   
 
Let s, t, and d represent samosa, dosa, vada, respectively.  In the following table we 
have listed some possible ways of purchasing these.  For instance, the second row 
represents the possibility that all 5 friends order only dosas.   
 
 

                   
  

s d v 

x x xxx 

xxx xxxx xx 
 
 
 
These orders can also be represented by x’s and   ’s. For instance, the first row can 
be written as xxxxx.  So, any order will consist of five x’s and two ’s.   
 
Conversely, any sequence of five x’s and two ’s represents an order.  So, there is a 1-
to-1 correspondence between the orders placed and sequences of five x’s and two ’s.  
But the number of such sequences is just the number of distinct ways of placing 2’s 
in 7 possible places.  This is C(7,2).   
 
More generally, if we wish to select with repetition, r out of n distinct objects, we are 
considering all arrangements of r of one kind (say x’s) and n − 1 of the other kind (say 
’s) (because (n − 1) ’s are needed to separate n types).    
 
The following result gives us the total number of such possibilities.  
 
Theorem 5: Let n and r be natural numbers. Then the number of solutions in natural 
numbers, to the equation x1 + x2 + … + xn = r, is C(n + r − 1,r).  Equivalently, the 
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allowed, is C(n + r − 1,r). 
 
Proof: Any string will consist of r objects and n − 1 bars, to denote the n different 
categories in which these objects can fall.  So, it will be a string of length n + r − 1, 
containing exactly r stars and n − 1 bars. The total number of such strings is the 
number of ways we can position (n − 1) bars in r different places. This  is C(n + r − 
1,r). 
 
Now we demonstrate how such strings correspond to solution of the equation x1 + …+ 
xn = r.   
 
n − 1 bars in the string divide the string into n substrings of stars. The number of stars 
in these n substrings are the values of x1, x2,…, xn. Since there are r stars altogether, 
the sum is r. Therefore, is a one-to-one correspondence between the strings and the 
solutions, and the theorem is proved.  
 
Let us consider examples of the use of this result.  
 
Example 10: In how many ways can a prize winner choose three books from a list of 
10 best sellers, if repeats are allowed? 
 
Solution: Here, note that a person can choose all three books to be the same title.  
Applying Theorem 5, the solution is C(10 + 3 − 1, 3) = C(12, 3) = 220.  
 

* * * 
 

Example 11: Determine the number of integer solutions to the equation 
x1 + x2 + x3 + x4 = 7, where xi ≥ 0 for all  i = 1,2,3,4.  
 
Solution: The solution of the equation corresponds to a selection, with repetition, of 
size 7 from a collection of size 4.  Hence, there are C(4 + 7 − 1, 7) = 120 solutions.  
(n = 4, r = 7 in Theorem 5.) 

 
* * * 

 
So, from this sub-section, we see the equivalence of the following:  

(a) The number of integer solutions of the equation x1 + x2 + … + xn = r, xi ≥ 0, 1≤ i 
≤ n.  

 
(b) The number of selections, with repetition, of size r from a collection of size n.  
 
(c) The number of ways r identical objects can be distributed among n distinct 

containers.    
 
Why don’t you try some exercises now? 
 

E15) A student in a college hostel is allowed four fruits per day.  There are 6 
different types of fruits from which she can choose what she wants.  For how 
many days can a student make a different selection? 

 
E16) An urn contains 15 balls, 8 of which are red and 7 are black.  In how many 

ways can: 

i)  5 balls be chosen so that all 5 are red? 

 ii) 7 balls be chosen so that at least 5 are red? 
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In this section we have considered choosing r objects, with repetition, out of n objects, 
regardless of order.  What happens when order comes into the picture?  Let’s consider 
an example.  
 
Example 12: A box contains 3 red, 3 blue and 4 white socks.  In how many ways can 
8 socks be pulled out of the box, one at a time, if order is important? 
 
Solution: Let us first see what happens if order isn’t important. In this case we count 
the number of solutions of r+b+w = 8, 0 ≤ r, b ≤ 3, 0 ≤ w ≤ 4.  To apply Theorem 5, 
we write x = 3 − r, y = 3 − b, z = 4 − 10.  
 
Then we have x+y+z = 10 − 8 = 2, and the number of solutions this has is C(3+2−1,2) 
= 6. 
 
These 6 solutions are (1, 0, 1) (0, 1, 1), (1, 1, 0), (2, 0, 0), (0, 2, 0), (0, 0, 2).  So, the 
corresponding solutions for (r, b, w) are 

(3, 3, 2), (2, 3, 3), (3, 2, 3), (3, 1, 4), (2, 2, 4), (1, 3, 4).  
 
Now, we consider order. From Theorem 2 we know that the number of ways of 

pulling out 3 red, 3 blue and 2 white socks in some order is .
!2!3!3

!8 This number would 

be the same if you had 2 red, 3 blue and 3 white socks, etc.  By this reasoning and 
considering all different orderings, the number of possibilities is  

.3220
!4!2!2

!8
!4!1!3

!82
!2!3!3

!83 =+





+






  

 
* * * 

 
What we see, via Example 13, is that if we want to find the number of possibilities 
wherein order matters and repetition is allowed them:  
 
Step 1: Find the possibilities when order doesn’t matter, using Theorem 5;  
 
Step 2: Use Theorem 2, to find the possibilities for each solution obtained in Step 1.  
 
Why don’t you try and exercise now? 
 

E17) How many 6-letter words, not necessarily meaningful can be formed from the 

letters of CARACAS? 

Let us now consider why C(n,r) shows up as the coefficients in the binomial 
expansions.  
 

2.5 BINOMIAL COEFFICIENTS 

You must be familiar with expressions like a+b, p+q, x+y, all consisting of two terms.  
This is why they are called binomials. You also know that a binomial expansion 
refers to the expansion of a positive integral power of such a binomial. For instance, 
(a+b)5 = a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5 is a binomial expansion. Consider 
coefficients 1, 5, 10, 10, 5, 1 of this expansion. In particular, let us consider the 
coefficient 10, of a3b2 in this expansion.  We can get this term by selecting a from 3 of 
the binomials and b from the remaining 2 binomials in the product (a+b) (a+b) (a+b) 
(a+b) (a+b). Now, a can be chosen in C(5, 3) ways, i.e., 10 ways. This is the way each 
coefficient arises in the expansion.  
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of (a+b)n.  From the n factors in (a+b)n, we have to select r for a and the remaining (n 
− r) for b.  This can be done in C(n, r) ways.  Thus, the coefficient of arbn−r in the 
expansion of (a+b)n is C(n, r).  
 
In view of the fact that C(n, r) = C(n, n − r), the coefficients of arbn−r and an−rbr  will be  
the same. r can only take the values 0, 1, 2, …, n.  We also see that C(n, 0) = C(n, n) = 
1 are the coefficients of an and bn.  Hence we have established the binomial expansion.   

(a+b)n = an + C(n, 1) an−1b + C(n, 2)an−2b2 + … + C(n, r) an−rbr + … + bn.  
 
In analogy with ‘binomial’, which is a sum of two symbols, we have ‘multinomial’ 
which is a sum of two or more (though finite) distinct symbols. Multinomial 
expansion refers to the expansion of a positive integral power of a multinomial.  
Specifically we will consider the expansion of (a1 +a2 + …+ am)n. For the expansion 
we can use the same technique as we use for the binomial expansion. We consider the 
nth power of the multinomial as the product of n factors, each of which is the same 
multinomial. Every term in the expansion can be obtained by picking one symbol 
from each factor and multiplying them. Clearly, any term will be of the form 

where rm21 r
m

r
2

r
1 a...aa 1, r2,…, are non-negative integers such that r1+r2+…+ rm = n.  Such 

a term is obtained by selecting a1 from r1 factors, a2 from r2 factors from among the 
remaining (n−r1) factors, and so on.  This can be done in  

C(n,r1). C(n−r1,r2).C(n−r1−r2, r3)…C(n−r1−r2−…−rm−1, rm) ways.   

If you simplify this expression, it will reduce to .
!r!...r!r

!n

m21
   

 
So, we see that the multinomial expansion is  

(a1+a2+…+am)n = Σ 
!r!...r!r

!n

m21

m21 r
m

r
2

r
1 a...aa  

where the summation is over all non-negative integers r1, r2,…, rm adding to n. 
 

The coefficient of in the expansion of (am21 r
m

r
2

r
1 a...aa 1+a2+…+ am)n is ,

!r!...r!r
!n

m21
 and 

is called a multinomial coefficient, in analogy with the binomial coefficient. We 
represent this by C(n; r1, r2, …, rm). This is also represented by many authors as 









mrrr

n
,....., 21

. 

 
For instance, the coefficient of x2y2z2t2u2 in the expansion of (x + y + z + t + u)10 is 
C(10; 2, 2, 2, 2, 2) = 10!/(2!)5.  
 
Let us see an example involving such coefficients.  
 
Example 13: What is the sum of the coefficients of all the terms in the expansion of 
(a+b+c)7? 

Solution: The required answer is ,
!t!s!r

!7
∑ where the summation is over all non-

negative integers r, s, t adding to n.  But it is also the value of tsr cba
!t!s!r

!7
∑ for a = b 

= c = 1.  
 
So the answer is (1 + 1 + 1)7 = 37.  

 
 

* * * 
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This short detour was just to give you an idea of the way in which the Cs and Ps can 
be extended.  Let us now consider some identities involving the binomial coefficients.  
We first consider Pascal’s formula.   
 
Theorem 6 (Pascal’s formula): For all positive integers n and all r such that  
1 ≤ r ≤ n, C(n + 1, r) = C(n, r) + C(n, r − 1).  
 
Proof 1: The left hand side of the identity represents the number of ways of choosing 
r things out of (n+1) distinct things. Suppose we select an object from the (n+1) things 
and mark it. Then the number of combinations in which the marked thing is absent is  
C(n, r), as we then  choose r things out of the unmarked n things. The number of 
combinations in which the marked thing is present is C(n, r−1), as we have to choose 
(r − 1),  things out of the unmarked things, and attach the marked thing to it to make  r 
things. Pascal’s formula now follows from the fact that the sum of the last two 
numbers mentioned must be equal to C(n+1, r). 

Proof 2:  C(n, r) + C(n, r − 1) = 
)!1r()!1rn(

!n
!r)!rn(

!n
−+−

+
−

 

 

         ).r,1n(C)r1rn(
)!r1n(!r

!n
+=++−

−+
=  

 
Pascal’s formula gives us a recursive way to calculate the binomial coefficients, since 
it tells us the value of C(n, r) in terms of binomial coefficients with a smaller value of 
n.  Note that we use the fact that C(n, 0) = 1 for all n ≥ 0 to start the recursion, since 
Theorem 6 only applies for 1 ≤ r ≤ n.  This recursive approach allows us to form 
Pascal’s triangle, the display of the binomial coefficients shown in Fig.4.  
 
The n es from 
0 (at  number 
1, for at C(n, 
0) = C he sum 
of the rty the 
Pasca ing the 
count
 

1 

 
The d
edge 
reflec

 

th row of Pascal’s triangle gives the binomial coefficients C(n, r) as r go
the left) to n (at the right); the top row is Row D. This consists of just the
 the case n = 0. The left and right borders are all 1’s, reflecting the fact th
(n, n) = 1 for all n. Each entry in the interior of the Pascal’s triangle is t

 two entries immediately above it to the left and right. We call this prope
l property. For example, each 15 in Row 6 (remember that we are start
 of rows with 0) is the sum of the 10 and the 5 immediately above it.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 
 
 

 
 
 
 
 

 

 

 1 

 1 1 

 1 2 1 

 1 3 3 1 

 1 4 6 4 1 

 1 5 10 10 5 1 

 1 6 15 20 15 6 1 

 1 7 21 35 35 21 7 1 

 1 8 28 56 70 56 28 8 1 

 1 9 36 84 126 126 84 36 9 1 

 1 10 45 120 210 252 210 120 45 10 1 

1 11 55 165 330 462 462 330 165 55 11 

 
 

Fig. 3: Pascal’s triangle 

iagonals of Pascal’s triangle are also interesting. The diagonal parallel to the left 
but moved one unit to the right reads (from the top down) 1, 2, 3, 4, 5,…, 
ting the fact that C(n, 1) = n for n ≥ 1. The next diagonal to the right, reading 1, 
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Basic Combinatorics 3, 6, 10, 15,…, reflects the fact that differences increase by 1 as we move down the 

diagonal.  
 
Let us now consider some identities involving binomial coefficients.  
 
Identity 1: C(n, 0) + C(n, 1) + C(n, 2) + … + C(n, n − 1) + C(n, n) = 2n 

By setting a = b = 1 in the binomial expansion of (a+b)n, we get this identity. In the 
context of sets, it tells us the number of distinct subset that can be formed from a set 
with n elements.  Note that the number of subsets containing precisely r elements is 
C(n, r). Hence the total number of subsets is  by the identity. So, 
this identity tells us that the number of distinct subsets of a set with n elements is 
2

,2)r,n(C nn
0r =∑ =

n.   
 
Identity 2: C(n, 0) − C(n, 1) + C(n, 2) − … + (−1)n C(n, n) = 0. 

We get this by setting a = 1, b = −1 in the expansion of (a+b)n.   
 
Now, adding the two identities, we get  

2 C(n, r) = 2
evenr
∑ n, i.e., 

evenr
∑ C(n, r) = 2n−1 

 
Similarly subtracting the second identity from the first leads us to the equation  

oddr
∑ C(n, r) = 2n−1.   

 
These two equations tell us that the number of subsets of a set of n elements with an 
even number of elements is equal to the number of subsets with an odd number of 
elements, both being 2n−1.  
 
Why don’t you try to prove some identities now?  
 

E18) Show that C(n, m) C(m, k) = C(n, k) C(n−k, m−k), 1 ≤ k ≤ m ≤ n.  

E19) Prove that C(k, k) + C(k + 1, k) + C(k + 2, k) + … + C(n, k) = C(n+1, k+1) for 
all natural numbers k ≤ n.   

Before ending this section, we just mention another extension of the definition of 
binomial coefficients. So far, we have defined C(n, r) for n ≥ r ≥ 0. We can extend this 
definition for any real number x, and any non-negative integer k, by 

C(x, k) = 
!k

)1kx)...(1x(x +−− . 

This definition coincides with that of C(n, k), when n is a non-negative integer.   
 
So far, in this unit, we have considered various ways of counting different kinds of 
arrangements. These methods are, not surprisingly, helpful in finding the probability 
of an event.  We shall now discuss this.  
 

2.6 COMBINATORIAL PROBABILITY 

Historically, counting problems have been closely associated with probability. The 
probability of getting at least 6 heads on 10 flips of a fair coin, the probability of 
finding a defective bulb in a sample of 25 bulbs if 5 percent of the bulbs from which 
the sample was drawn are defective  all these probabilities are essentially counting 
problems. In fact, Pascal’s triangle (Fig. 4) was developed by Pascal around 1650 
while analysing some gambling probabilities.  
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Let us start by recalling some basic facts about probability.  An experiment is a 
clearly defined procedure that produces one of a given set of outcomes.  The set of all 
outcomes is called the sample space of the experiment.    
 
For example, the experiment could be checking the weather to see if it is raining or 
not on a particular day. The sample space here would be {raining, not raining}.   
 
Given an experiment, we can often associate more than one sample space with it.  For 
instance, suppose the experiment is the tossing of two coins.  

i)  If the observer wants to record the number of tails observed as the outcomes, the 
sample space is {0, 1, 2}. 

ii) If the outcomes are the sequence of heads and tails observed, then the sample 
space is {HH, HT, TH, TT}.  

A subset of the sample space of an experiment is called an event. For example, for an 
experiment consisting of tossing 2 coins, with sample space {HH, HT, TH, TT}, the 
event that two heads do not show up is the subset {HT, TH, TT}.  
 
Suppose X is a sample space of an experiment with N out comes. Then, the events are 
all the 2N subsets of X. The empty set φ is called the impossible event, and the set X 
itself is called the sure event.   
 
Now, for the purpose of this course, we will assume that all the outcomes of an 
experiment are equally likely, that is, there is nothing to prefer one case over the 
other. For example, in the experiment of coin tossing, we assume that the coin is 
unbiased. This means that ‘head’ and ‘tail’ are equally likely in a toss. The toss itself 
is considered a random mechanism ensuring ‘equally likely’ outcomes. Of course, 
there are coins that are ‘loaded’, which means that one side of the coin may be heavier 
than the other.  But such coins are excluded from our discussion.  Also, in our 
discussions we shall always assume that our sample space is finite. 
 
Given this background, we have the following definition. We represent the 

number of elements 
of a finite set A, i.e., 
the cardinality of 
A, by n(A) orA.   

Definition: Then the probability of the event A, represented by P(A), is .
)X(n
)A(n   

For instance, the probability that a card selected from a desk of 52 cards is a spade is 

,
52
13  because A is the set of 13 spades in the deck.  

 
From the definition, we get the following statements:  

i) As n (φ) = 0, it follows that P(φ) = 0.    

ii) By definition, P(X) = .1
)X(n
)X(n
=  

iii) If A and B are two events, then n(A∪B) = n(A) + n(B) − n(A∩B).   Therefore, 
P(A∪B) = P(A)+P(B) − P(A∩B). 

iv) (Addition Theorem in Probability) : If A and B are two mutually exclusive 
events, then the probability of their union is the sum of the probabilities of A and 
B.  i.e., if A∩B = φ, then P(A∪B) = P(A) + P(B).  

 [This is a consequence of (i) and (iii) above.] 

v) Suppose A is an event.  Then the probability of Ac (also denoted by A′), the event 
complementary to A, or the event ‘not A’ is 1 − P(A), i.e.,  

  P(Ac) = 1 − P(A).  
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i.e., A∪Ac = X and P(A) + P(Ac) = 1.   

vi) (The generalised addition theorem) : If the events A1, A2,…,Am are pairwise 
disjoint (i.e., mutually exclusive), then P( ).P(A)AU i

i
i

i
∑=    

 
Let us consider some examples from combinatorial probability.   

 
Example 14: A die is rolled once. What are the probabilities of the following events?  

(i)   getting an even number,  

(ii)  getting at least 2, 

(iii) getting at most 2, 

(iv) getting at least 10. 
 
Solution: If we call the events A, B, C and D, then we have X = {1, 2, 3, 4, 5, 6},  
A = {2,4,6}, B = {2,3,4,5,6}, C = {1,2}, and D = φ.   
 
Hence, P(A) = 3/6, P(B) = 5/6, P(C) = 2/6, P(D) = 0. 
  

* * * 
 
Example 15: A coin is tossed n times.  What is the probability of getting exactly r 
heads? 
 
Solution: If H and T represent head and tail, respectively, then X consists of 
sequences of length n that can be formed using only the letters H and T. Therefore, 
n(X) = 2n. The event A consists of those sequences in which there are precisely r Hs.  
So, n(A) = C(n, r).  Hence, the required probability is C(n, r)/2n.  
 

* * * 
 
Example 16: Two dice, one red and one white, are rolled. What is the probability that 
the white die turns up a smaller number than the red die? 
 
Solution: If the number on the red die is x and that on the white die is y, then X 
consists of the 36 pairs (x, y), where x and y can be any integer from {1, 2, 3, 4, 5, 6}.  
 
For the event A, we need x < y.  For x = 1, 2, 3, 4, 5, y can be x + 1, x+2,…, 6, i.e.,     
6 − x in number.  Thus, by the addition principle,  

n(A) =  .1512345)x6(
5

1x
=++++=−∑

=

Hence, P(A) = 15/36 = 5/12.  
 

* * * 
 
Example 17: If a five-digit number is chosen at random, what is the probability that 
the product of the digits is 20? 
 
Solution: If X is the collection of all 5-digit numbers, then n(X) = 9.104 = 90000.  
Now, 20 can be factored in only two ways, viz., 1.1.1.4.5 and 1.1.2.2.5, as the product 
of five factors. Of course, these factors can be permuted to give all possible cases for 
A. The numbers 5, 4, 1, 1, 1 can be permuted in 5!/1!1!3! = 20 ways, and the numbers 
5, 2, 2, 1, 1 can be permuted in 5!/1!2!2! = 30 ways.  
 
So, n(A) = 20 + 30 = 50.  
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Hence, P(A) = 50/90000 = 1/1800. 

 
* * * 

 
Example 18: Suppose A and B are mutually exclusive events such that P(A) = 0.3 and 
P(B) = 0.4.  What is the probability that  

i)   A does not occur? 

ii)  A or B occurs? 

iii) Either A or B does not occur? 
 
Solution:  

i)   This is P(Ac) = 0.7.  

ii)  This is P(A∪B) = 0.7. 

iii) This is P(Ac∪Bc) = P[(A∩B)c] = P(φc) = P(X) = 1 
 

* * * 
 
Try some exercises now.  
 

E20) A,B,C and D are four candidates for a chairperson’s post. Suppose that A is 
twice as likely to be elected as B, B is thrice as likely as C, and C and D are 
equally likely to be elected. What is the probability of election of each 
candidate? 

 
E21) In a ten-question true-false exam, a student must achieve six correct answers to 

pass.  If she selects her answers randomly, what is the probability that she will 
pass? 

There are several other methods for solving combinatorial problems. These will be 
taken up in the next two units.  Let us now summarise what we have covered in this 
unit.  
 

2.7 SUMMARY 

In this unit we have discussed some counting techniques.  Specifically, we have 
covered the following points.  

1. The multiplication and addition principles for counting the number of ways in 
which a task can be completed.  

2. What a permutation is, the derivation of the formula P(n,r) = ,
)!rn(

!n
−

and its 

application for solving problems.  
 
3. The number of distinct arrangement of n objects of which m1 are of Type 1, m2 

are of Type 2,…, mk are of Type k, where m1, m2 +…,mk = n, is  

P(n; m1, m2,…,mk) = .
!m!...m!m

!n

k21
 

 
4. What a circular permutation is, and that the number of such permutations of n 

objects, taken all at a time, is (n−1)! 
 
5.  What a combination is, the derivation of the formula  
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C(n,r) = ,
!r)rn(

!n
!r

)r,n(P
−

= and its application for solving problems.  

 
6. The proof and applications of the fact that the number of ways of choosing r 

objects from a collection of n objects, with repetition allowed, is C(n+r−1,r).  
 
7. Why C(n,r) is called a binomial coefficients, and its analogue for multinomials.  
 
8. Some identities involving C(n,r), including Pascal’s formula  

C(n+1,r) = C(n,r) + C(n,r−1).  
 

9. The use of counting techniques for finding some discrete probabilities.  
 

2.8 SOLUTIONS/ ANSWERS 

E1) For instance, both principles are used to find the number of ways in which 17 
files are stored if there are 3 storage locations of 1000 K each and 10 files are of 
100 K, 5 of 200 K 2 of 500 K.  

 
E2) Here we apply the multiplication principle.  Each letter has 10 possibilities.  

Therefore, the total number of words is 104.  
E3) Suppose we number the men as 1, 2, 3,…, n.  Then the first man can be paired 

with any of the n women, the second can be paired with any from the remaining 
(n − 1) women, and so on.  Hence, the number of ways of pairing is n(n − 1)… 
1 = n!.  

 
E4) By the multiplication principle, the number of integers between 100 and 999 

with all digits even is 4.5.5 = 100 (Note that the first digit cannot be zero, but 
the second and third digits can be 0.)  

 
E5) For a number to be odd the last digit should be odd. So, the last position can be 

filled up in 5 ways. If the middle position is filled up by 0, then the first position 
can be filled up in 8 ways. Thus the number of odd numbers with 0 in the 
middle position and all digits distinct is 40, by the multiplication principle.   

 
If the middle position is filled up by a digit other than 0, then this can be done 
in 8 ways.  Then the first position can be filled up in 7 ways.  So, the number of 
odd numbers with all digits distinct with the middle digit not zero is 5.8.7 = 
280.   
 
Thus, by the addition principle the answer is 40 + 280 = 320. 

 
E6) (m + n)! = (m + n) (m + n − 1) … (m + 1) m!.  

 ⇒ (m + n)! − m! =  ≥ mn + n! ≥ m! [n! + mn − 1] 
 ⇒ (m + n)! − m! – n! ≥ n! (m! − 1) + m! (mn − 1) ≥ 0. 
 
E7) Without repetitions, the number is P(6, 3). For the number to be less than 400, 

the leftmost digit can only be 2 or 3. The rest of the digits can be filled in P(5, 
2) ways. So, the total number of numbers less than 400 will be 2P(5, 2).  
Similarly, the total number of even numbers is 3P(5, 2).  

 
Note: That the addition principle has been used in both cases.  

 
E8) A ranking is an ordering of the n candidates.  This can be done in P(n,n) = n! 

ways.  The total number of rankings in which Sheela is in 2nd place in P(n − 1, n 
− 1) = (n − 1)! 
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E9) In the word ‘ASSESSES’, we have A once, E twice, and S five times.  Thus the 

number of permutations is 8!/1!2!5! = 168.  
In the word ‘PATTIVEERANPATTI’, R, N and V occur once, P, E and I occur 
twice, A thrice and T four times.  Thus the required number of permutations is 
16!/1!1!1!2!2!2!3!4! = 9.10.  

 
E10) By the multiplication principle, the answer is 26.25.24 if the letters cannot be 

repeated, and 26.26.26 if the letters can be repeated.  
 
E11) The seven men can be seated first.  This can be done in 6! ways.  The women 

can sit in between two men.  There are seven such places.  So, the women can 
sit in P(7,5) ways.  Hence the answer is 6! × P(7,5).  

 
E12) This can be done in C(12, 1).C(15,1) ways, i.e., 180 ways.  
 
E13) This can be done in C(10, 3) ways, i.e., 120 ways.  
 
E14) The total number of possibilities is C(20,3).C(30,4) = 31,241,700.   
 
E15) Applying Theorem 5, we get C(9, 4) = 126 days. 
 
E16) i) Be careful! This is not an application of Theorem 5. This is only the  
 number of ways of choosing 5 balls out of 8 balls, i.e. C(8, 5). 
 

             ii) First pick 5 red balls, in C(8,5) ways. Then pick the remaining 2 arbitrarily.  
These 2 can be chosen in C(2+2−1, 2) = 3 ways.  So, the total number of ways 
is C(8, 5) × 3.  

 
E17) We have 2Cs, 3As, 1R and 1S. If order is not a concern, we consider the 

solutions of  

c+a+r+s = 6, 0 ≤ c ≤ 2,  0 ≤ a ≤ 3,  0 ≤ r, s ≤ 1.   
 
 We convert this to the equivalent problem 

x+y+z+t = 1, where x = 2 − c, y = 3 − a, r = 1 − z, s = 1 − t,  
 
 The number of solutions of this is C(4 + 1 − 1, 1) = 4. 
 
 There are (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0) and (0, 0, 0, 1).  
 
 The corresponding solutions in (c, a, r, s) are (1, 3, 1, 1), (2, 2, 1, 1), (2, 3, 0, 1), 

(2, 3, 1, 0).  
 
 Now order becomes important to us.  Applying Theorem 2, the required number 

is   

.420
!0!1!3!2

!62
!1!1!2!2

!6
!1!1!3!1

!6
=






++  

  
E18) The left side counts the ways to select a group of m people chosen from a set of 

n people and then select a subset of k leaders, say, of this group of m. This can 
also be done by selecting the subset of k leaders from the set of n people first, 
and then selecting the remaining m − k members of the group from the 
remaining n − k people. The number of ways in which this can be done is given 
on the right hand side. Therefore, the identity.  

  
You can also prove this algebraically.  
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Basic Combinatorics E19) One can prove this by induction on the variable n. The base case is trivial, since 
if n = 0, then k = 0 as well, and the equation reduces to C(0, 0) = C(1, 1), which 
is true. The induction step is proved by Pascal’s formula and the induction 
hypothesis.  

 
E20) The relative weightages of A, B, C and D are 6.3, 1, 1, respectively. So, P(A) = 

).D(P
11
1)C(P,

11
3)B(P,

11
6

===  

  
E21) The answer is same as the probability of getting at least 6 heads in 10 tosses of 

a true coin. Hence, the answer is  

C(10, 6)/210 + C(10, 7)/210 + C(10, 8)/210 + C(10, 9)/210 + C(10, 10)/210   
 
 = (210 + 120 + 45 + 10 + 1)/1024 = 193/512.  
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