
UNIT 2 THE INPUTIOUTPUT SYSTEM

Structure Page No.

Introduction
Objectives
lnput / Output Devices or External or Peripheral Devices
The lnput Output Interface
The Device Controllers and its Structure
2.4.1 Device Controller
2.4.2 Structure of an Input /Output Interface
Device Drivers
lnput Output Techniques
2.6.1 Programmed Input /Output
2.6.2 Interrupt-Driven Input /Output
2.6.3 Interrupt-Processing
2.6.4 DMA (Direct Memory Access)
lnput Output Processors
External Communication Interfaces
Summary
S o l ~ ~ t i o n s /Answers

2.0 INTRODUCTION

I n the previous Unit, we have discussed the memory system for n compute1 > ~ s t e r n
that contains primary memory, secondary memory, high speed Inelnol y and their
technologies; the memory systeln of micro-computers 1.e.. their chips and types of
memory. Another important component in addition to discussing the memory system
will be the inputloutput system. In this unit we will discuss lnput /Output controllers,
device drivers, the structure of 110 interface, the 110 techniques. We will also discuss
about the lnput / Output processors which were quite common in mainframe
computers.

-
2.1 OBJECTIVES

At the end of this unit you should be able to:

identify the structure of inputloutput interface;
identify the concepts of device drivers and device controllers;
describe the input/output techniques, i.e., prograrn~ned 110, interrupt-driven 110
anci direct memory access;
define an inputloutput processor;
describe external communication interfaces such as serial and parallel interfaces;
ancl
detine interrupt processing.

- \.

2,.2 INPUT1 OUTPUT DEVICES OR EXTERNAL

-
OR PERIPHERAL DEVICES

E,efore going on to discuss the input/ output sub/systems of a computer, let us discuss
how a digital computer system can be implemented by a microcomputer system. A
typical microcomputer system consists of a ~nicroprocessor plus memory and 110
interface. 'The various components that form the system are linked through buses that
transfer instructions, data, addresses and control information among the components.
'l'he block d iag~am of a microcomputer systeln is shown in Figure. 1 .

Local Bus
(Internal Bus to

Basic Computer
Organisation '

Motherboard
CPU

Main memory

B++ Cache + (RAM and
ROM) ,.

Registers

Video Keyboard
Processor

VRAM

Display J
Device USB & other 110 Buses

Digital
camera

Scanner "rl

Figure 1: Blocli Dirgra~ll of a Microconlputer Systenl

The microcomputer has a single microprocessor, a number of RAM and ROM chips ,

and an interface units communicates with various external devices through the.110
Bus.

The Input I Output subsystem of a computer, referred to as 110, provides an efficient
mode of communication between the central system and the output environment.
External devices that are under the direct control of the computers are said to be
connected on-line. These devices are designed to read information into or out of the
memory unit upon comrnand from the CPU and are considered to be part of the
computer system. Input I Output devices attached to the computer are also called
peripherals. We can broadly classify peripherals or external devices into 3 categories:

Human readable: suitable for commu~;icatin~ with the computer user, e.g., video
display terminals (VDTs) & printers.

Machine-readable: suit'able for communicating with .equipment, e.g., magnetic
disks and tape system.

Communication: suitable for communicating with remote devices, e.g., terminal, *
a machine-readable device.

,2 .3 THE INPUT /OUTPUT INTERFACE

The lnput /Output interface provides a method for transferring infonnation between
internal storage and external 110 devices. Peripherals connected to a computer need
special communication links for interfacing them with the CPU. The purpose of the

communication link is to resolve the differences that ex~st between the central
computer and each peripheral. The major differences are:

e Peripherals are electromagnetic and electromechanical devices and their
operations are different from the operation of the CPU and the memory, which
are electronic devices.
The data transfer rate of peripherals is usually slower than the transfer rate of the
CPU, and consequently a synchronization mechanism may be needed.
Data codes and formats in peripherals differ from the word format in the CPU
and memory.
The operating modes of peripherals are d i f f e ~ n t from each other and each'must
be controlled so as not to disturb the operation of other peripherals connected to
the CPU. .

To resolve these differences, computer systems include special hardware component
between the CPU and peripherals to supervise and synchronize all input and output
t~~ansfers. These components are called interface units because they interface between
the processor bus and the peripheral device.

F'unctlons of U 0 Interface

, lm IIQ interface is bridge between the processor and I10 devices. It controls the data
exchange between the external devices and the main memory; or external devices and
processor registers. Therefore, an VO interface provides an interface internal to the
c:omputer which connects it to the processor and main memory and an interface
external to the computer connecting it to external device or peripheral. The I10
interface should not only communicate the information from processor to main I10
device, but it should also coordinate these two. In addition, since there are speed
differences between processor and I10 devices, the 110 interface should have facilities
like buffer and error detection mechanism. Therefore, the major functions or
I-equirernents of an 110 interface are:

t

It should be able to provide control and timing signals

The need of I10 from various I10 devices by the processor is quite unpredictable. In
fact it depend:, on I/O needs of particular programs and normally does not follow any
pattern. Since. the I10 interface also shares system bus and memory for data
input output. control and timing are needed to coordinate the flow of data fromlto
external devices tolfrom processor or memory. For example, the control of the transfer
of data from an external device to the processor might involve the following steps:

1. The processor enquires from the 110 interface to check the status of the attached
device. The status can be busy, ready or out of order.

2. The I10 interface returns the device status.

3. If the device is operational and ready to transmit, the processor requests the
transfer of data by means of a command, which is a binary signal, to the 110
interface.

4. The I10 interface obtains a unit of data (e.g., 8 or 16 bits) from the external
device.

5 . The data is transferred from the I10 interface to the processor.

It should communicate with the processor

The Input 1 Output
System

Basic Computer
Organisation

1. Commands such as READ SECTOR, WRITE SECTOR, SEEK track number
and SCAN record-id sent over the control bus.

2. Data that are exchanged between the processor and 110 interface sent over the mi
data bus.

Status: As peripherals are so slow, it is important to know the status of the 110
interface. The status signals are BUSY or READY or in an error condition from
I10 interface.
Address recognition as each word of memory has an address, so does each I10
device. Thus an I10 interface must recognize one unique address for each
peripheral it controls.

It should communicate with the 110 device H
Communication between I10 interface and 110 device is needed to complete the I10
operation. This communication involves commands, status or data. 1:
It should have a provision for data buffering 11
Data buffering is quite useful for the purpose of smoothing out the gaps in speed of
processor and the I10 devices. The data buffers are registers, which hold the 110
information temporarily. The I10 is performed in short bursts in which data are stored
in buffer area while the device can take its own time to accept them. In I10 device to
processor transfer, data are first transferred to the buffer and then passed on to the
processor from these buffer registers. Thus, the I10 operation does not tie up the bus
for slower 110 devices.

Error detection mechqnism should be in-built I1
The error detection mechanism may involve checking the mechanical as well as data
communication errors. These errors should be reported to the processor. The examples
of the kind of mechanical errors that can occur in devices are paper jam in printer,
mechanical failure, electrical failure etc. The data communication errors may be
checked by using parity bit. -
2.4 THE DEVICE CONTROLLERS AND ITS

STRUCTURE

All the components of the computer communicate with the processor through the
system bus. That means the I10 devices need to be attached to the system bus.
However, I10 devices are not connected directly to the computer's system bus. Instead
they are connected to an intermediate electronic device interface called a device
controller, which in turn is connected to the system bus. Hence a device controller is
an interface between an I10 device and the system bus. On one side, it knows how to
communicate with the 110 device connected to it, and on the other it knows how to
communicate with the computer's CPU or processor and memory through the system
bus.

2.4.1 Device Controller

A device controller need not necessarily controI a single device. It can usually control
multiple UO devices. It comes in the form of an electronic circuit board that plugs
directly into the system bus, and there is a cable from the controller to each device it

.

controls. The cables coming out of the controller are usually terminated at the back
panel of the main computer box in the form of connectors known as ports.

8 Each 110 device is linked through a hardware interface called I10 Port.

Single and Multi-port device controls single or multi-devices.

The comrnunjcation between I10 controller and Memory is through bus only in
case of Direct Memory Access (DMA), whereas the path passes through the CPU
for such communication in case of non-DMA.

The I ~ p u t I Output
System

ystem bus

4 Controller
(Multi-port)

Device
Controller

(Single-port) r-l
YO Port . .. P I

Device LTJ
Figure 2: Connecting If0 Devices using Device Controller

IJrlng device eontrollers for connecting I10 devices to a computer system instead of
1:onnecting them directly to the system bus has the following advantages:

r A device controller can be shared among multiple I10 devices allowing many I10
devices to be connected to the system.

I10 devices can be easily upgraded or changed without any change in the
computer system.

I10 devices of manufacturers other than the computer manufacturer can be easily
plugged in to the computer system. This provides more flexibility to the users in
buying I10 devices of their choice,

I

2.4.2 Structure of an I f 0 Interface I

Due to the complexity and the number of external devices that the 110 ~ltkerface
control, there is no standard structure of I10 interface. Let us give a general structure

I
to an 110 interfaces:

There is a need of 110 logic, which should interpret and execute dialogue 'I*.
between the processor and UO interface. Therefore, there need to be control lines
between processors and I10 interface. I

r Thz data line connecting I18 interface to the system bus must exist.'~hese lines
serve the purpose of data transfer.

r Data registers may act as buffer between processor and I18 interface. I
The I10 interface contains logic specific to the interface with each device that it I

Hasic Computer I ~ l t c r ~ ~ c e lv i t l l
Organisation S!,ste~n Bus

1 External
Device
Interface Status
Logic Control

Status Register

Control L ~ n c s

4 - - - - +
Address Lines b - - - - -

Figure 3: The General Structure of m 110

Figure 3 above is a typical diagram of an I10 interface which in addition to all the
registers as defined above has status/control registers which are used to pass on the
status information or the control information. I
2.5 DE'VICE DRIVERS

A device driver is software interface which manages the communication with, and the
control of, a specific I10 device, or type of device. It is the task of the device driver to
convert the logical requests from the user into specific commands directed to the
device itself. For example, a user request to write a record to a floppy disk would be
realised within the device driver as a series of actions, such as checking for the
presence of a disk in the drive, locating the file via the disk directory, positioning the
heads, etc.

Device Drivers in UNIX, MS-DOS and Windows System

Although device drivers are in effect add-on modules, they are nevertheless
considered to be part of the system since they are closely integrated with the Input1
Output Control System, which deals with I/O related system calls.

In UNIX the device drivers are usually linked onto the object code of the kernel (the
core of the operating system). This means that w h a new device is to be used, which
was not included in the original construction of the operating system, the UNIX kernel
has to be re-linked with the new device driver object code. This technique has the
advantages of run-time efficiency and simplicity, but the disadvantage is that the
addition of a new device requires regeneration of the kernel. In UNIX, each entry in
the Idev directory is associated with a device driver which manages the
communication with the related device. A list of some device names is as shown

Device name Description The Input I Outpu~t
Systern

/dev/console system console
IdevIttyO 1 user terminal 1
/dev/tty02 user terminal 2
~devllp line printer
/dev/dsk/f03h 1.44 MB floppy drive

'.n MS-DOS, device drivers are installed and loaded dynamically, i.e., they are loaded
- into memory when the computer is started or re-booted and accessed by the operating

system as required. The technique has the advantage that it makes addition of a new
driver much simpler, so that it could be done by relatively unskilled users. The
additional merit is that only those drivers which are actually required need to be
loaded into the main memory. The device drivers to be loaded are defined in a special
file called CONFIG.SYS, which must reside in the root directory. This file is
automatically read by MS-DOS at start-up of the system, and its contents acted upon.
A list of some device name is as shown below:

Device name Description

con: keyboard/screen
com 1 : serial port 1
com2: serial port2
Ipt 1 : printer port1
A : first disk drive
C : hard disk drive

In the Windows system, device drivers are implemented as dynamic link libraries
(DLLs). This technique has the advantages that DLLs contains shareable code which
means that only one copy of the code needs to be loaded into memory. Secondly, a
driver for a new device can be implemented by a software or hardware vendor without
the need to modify or affect the windows code, and lastly a range of optional drivers
can be made available and configured for particular devices.

In the Windows system, the idea of Plug and Play device installation is required to
add a new device such as a CD drive, etc. The objective is to make this process largely
automatic; the device would be attached and the driver software loaded. Thereafter,
the installation would be automatic; the settings would be chosen to suit the host
computer configuration.

Check Your Progress 1

1. What are the functions of an 110 interface?
..
........ ...
..

2. State True or False: a
(a) Coml is a UNIX port.
(b) The buffering is done by data register.
(c) Device controller is shareable among devices.
(d) I10 system is basically needed for better system efficiency

El
(e) Device drives can be provided using software libraries.

El
(f) The devices are normally connected directly to the system bus. 0
(g) Data buffering is helpful for smoothing out the speed differences

between CPU and inputloutput devices.
(h) Input1 output module is needed only for slower I 1 0 devices

0 '
0

a s k Computer
I Organbation

3. What is a device driver? Differentiate between devlce c~ntroller and devlce
drivers.
.......... ~ 1 4 ...

I

......

..

..

..

Afier going through the details s f the device interfaces, the next point to be discussed
is how the interface may be used to support input/output.from devices. Binary
information received from an external device is usually stored in memory for later

operation. These are:

Programmed input/outgut
Intempt driven input/autput
Direct memory t\coess

Figure 4 gives an overview of these three techniques

Figure 4: bvervlcw of the three Inpuff Output

In programmed I/O, the 110 operations are completely controlled by the processor.
The processor executes a program that initiates, directs and terminate an VO
operation, It requires a little special 110 hardware, but is quite time consuming for the
processor since the processor has to wait for slower I10 operations to complete.

With interrupt driven 110, when the interface determines that the device is ready for
data transfer, it generates an interrupt request to the computer. Upon detecting the
external interrupt signal, the processor stops the task it is processing, branches to a
service program to process the 110 transfer, and then returns to the task it was
originally performing which results in the waiting time by the processor being
reduced. -- --en

With both programmed and interrupt-driven 110, the processor is responsible for
extracting data fiom the main memory for output and storing data in the main memory

.,- ?
during input. What about having an alternative where I70 device may directly store
data or retrieve data from memory? This alternative is known as direct memory access J

(DMA). In this mode, the I10 interface and main memory exchange data directly,
without the involvement of processor.

3

--

The Input I Output.
System '

CPU+ VO

command to - - + Do other
processing processing

1/0+ CPU

Issue
--) Error

Condition

Ready 1

Write word

*
Next instruction

Read statua lntermpt

of L'3, I10 +CPU
intcrfacc I--

lssue e m r
Cond~ t~on

poss~ble

Interface

Read status lntermpt
of DMA

Next instruction

Write word I into memory I CPU+

Next instruction _ . ..
Interrupt Driven 110 (4 mu

Figuw 51 Three tcchnlques of UO

2.6.1 Programmed Input /Output

Programmed input/autput is a usefbl I10 method for computers where hardware costs
~ee;d to be mlnlwised. The input or output operation in such cases may involve:

w) TransPer of data from I10 device to the processor registers.
~

!m b) Transfer of data from processor registers to memory.

Wifh the programmed IIQ method, the responsibility of the processor is to constantly - ~
check the status of the I/O device to check whether it is free or it has finished I
Inputting the data. Thus, this method is very time consuming where the processor
wastes a lot of time In checking and verifying the status of an I10 device. Figure 5(a)
gives an example of the use of programmed I10 to read in a block of data from a
peripheral device info memory.

I

. 51

*
Basic Computer Il0 Commands
Organisation

There are four types of I10 commands that an VO interface may receive when it is
addressed by a processor:

Control: These commands are device specific and are used to provide specific -
instructions to the device, e.g. a magnetic tape requiring rewinding and moving
forward by a block.
Test: This command checks the status such as if a device is ready or not or is in
error condition.
Read: This command is useful for input of data from input device.
Write: this command is used for output of data to output device.

110 Instructions:
I

An I/O instruction is stored in the memory of the computer and is fetched and
executed by the processor producing an 110-related command for the I10 interface.
With programmed 110, there is a close correspondence between the 110-related
instructions and the I10 commands that the processor issues to an UO interface to
execute the instructions.

In systems with programmed VO, the I10 interface, the main memory and the
lr-ocessors normally share the system bus. Thus, each I10 interface should interpret
,;c address lines to determine if the command is for itself. There are two methods for ' '

doing so. These are called memory-mapped I10 and isolated 110.

With memory-mapped VO, there is a single address space for memory locations and
I10 devices. The processor treats the status and data registers of I10 interface as
memory locations and uses the same machine instructions to access both memory and
VO devices, For a memory-mapped I10 only a single read and a single write line are
needed for memory or VO interface read or write operations. These lines are activated
by the processor for either memory access or UO device access. Figure 6 shows the
memory-mapped I10 system structure.

\lit11 isolated 110, there are separate control lines for both lnemory and I10 device
wad or write operatians. Thus a menlory reference instrdction does not affect an 110
device. In isolated 110, the 110 devices and memory are addressed separately: hence
separate inputloutput instructions are needed which cause data transfer between
addressed 110 interface and processor. Figure 7 shows the stl.uZture of isolated 110.

l'k Input I Outpul
System

VO Devices
i

Data bus

Address bus

I
Figure 7: Structurc of lsolnted 1 1 0

I

2.6.2 Intel-rupt-Driven Inputtoutput

The proble~n with programmed. I10 is that the processor has to wait a long time for the
I10 interface to see whether a device is free or wait till the completion of 110. The
result is that t i e performance of the processor goes down tremendously. What is the
solution? What about the processor going back to do other useful work without
wa~ting for the 110 device to co~nplete or get freed up? But how will the processor be
int~lnated about the co~npletion of 110 or a device is ready for IIO? A well-designed
mechanism was conceived for this, which is referred to as interrupt-driven 110. In this
mechanism. provision of interruption of processor work, once the device has finished
the 110 or when it is ready for the 110, has been provided.

l'he interrupt-driven I10 mechanism for transferring a block of data is shown in Figure
5(b). Please note that after issuing a read coni~nand (for input) the CPU goes off to do
other useful work while 110 interface proceeds to read data fro111 the associated
device. On the completion of an instruction cycle, the CPU checks for interrupts
(which will occur when data is in data register of 110 interface and it now needs
CPU's attention). NOW CPU saves the important register and processor status of the
executing program in a stack and requests the I10 device to provide its data, which is
placed on the data bus by the 110 device. After taking the required action with the
data. the CPLJ can go back to the program it was executing before the interrupt.

H 8.6.3 Interrupt-Processing

Basic Computer
Organisation

Hardware * Software *
Devtce controller/
system hardware

issues an interrupt _ - .
Save remaining

process state
~nformat~on

Processor completes
execution of current

instruction

servtcing program

Processor

intenupt
Restores process

state informatton of
old process '

Processor saves
PSW and PC on

the stack

Restores old PSW

Processor loads PC
with address of ISR

I

Figure 8: lnterrupi-processing Sequence
I

When an 110 device completes an 110 ope/ption, the following sequence of hardware
events occurs:

1. The device issues an interrupt signal to the processor.

2. The processor finishes execution of the current instruction before responding to
the interrupt.

3. The processor tests for the interrupts and sends an acknowledgement signal to the
device that issued the interrupt.

4. The minimum information required to be stored for the task being currently
executed, before the CPU starts executing the interrupt routine (using its
registers) are:

(a) The status of the plocessor, which'is contained in the register called program
status word (PSW),\and

(b) The location of the next instruction to be executed, of the currently executing
program, which is contained in the program counter (PC).

Stack

'OPT-
Control

stack

-I- -1- A 1'1 ogriilll L , , . .

COLIIIICI

routine Gcncral
rcylstcr

A + L Rcturn
Stack

polntcr

Proccswr

Uscr's
N + 1 program

Main
memory

B ~ s i e Cpmpeter Thus, interrupt handling involves interruption of the currently executing program,
Orgnnlsation execution of interrupt servicing program and restart of i n tmpted program from the

point of interruption,
,

Design issues: Two design issues arise in implementing interrupt-driven 110: .

1) How does the processor determine which device issued the interrupt?

2) If multiple interrupts have occurred,.how does the processor decide which one to
be processed first?

To solve these problems, four general categories of techniques are In common use:
* .

c Multiple Interrupt tlnes: The simplest solution to the problem above i s to
provide multiple interrupt Hnes, whieh will result in immediate recognition ofthe
interrupting device, Prforlties can 'be assigned to vwlous interrupts and the
Interrupt with the, highest priority should be se!ected for service in GWQ a rnultipls
jnterrupt occuw. But providing inultlple interrupt lines is 9n Iinpractical approach
because only a few Unea of the system bus can be devoted for the interrupt;

r Safhvare Poll; In thls scheme, on the occurrence of:an Interrupt, the professor
jumps to an Interrupt service program or routine whose job it i s to poll (roll call)
each I18 interface to determine which 110 interface has cauaed the interrupt. Thia
may be aohievad by reading the status reglster of the 110 Interface. Once the
correct interface is identified, the processor branches to a device-service routine
specific to that device. The disad;antage of the software poll is that it is time
consuming.

r Palsy chain: This scheme provides a hardware pall. with thls technlque, an
lntemupt acknowledge line Is chained through various interrupt devices. All VQ
interfaces share a common Interrupt request llne. When the processor senses an
interrupt, it sends out an interrupt acknowledgement. This signal passes through
all the I10 devices until it gets to the requesting device. The first device which
has made the ipterrupt request thus senses the signal and responds by putting in a
word which is normally an address of interrupt servicing program ar a unlque
identifier on the data lines. This word is also referred to as interrupt vector. Thls
address or identifier in turn is used for selecting an appropriate interrupt-
servicing program. The daisy chaining has an in-built priority scheme, which is
determined by the sequence of devices on interrupt acknowledge line.

m Bus arbitration: In this scheme, the 110 interface first needs to control the bus
and only qfter that it can request for an i~terrupt. In this scheme, since only one
of the interfaces can control the bus, therefore only one request can be made at a
time. The interrupt request is acknowledged by the CPU on response of which
I10 interfaca piaces the interrupt vector on the data lines. An interrupt vector
normally contains the address of the interrupt serving program.

An example of an iqterrupt vectar can be a personal computer, where there are several
IRQs (Interrupt request) for a specific type of interrupt.

2.6.4 DMA (Direct Memory Access)

In both interrupt-driven and programmed 110, the processor is busy with executing
inputloutput instructions and the I10 transfer rate is limited by the speed with which
the processor can test and service ir device. What about a technique thq requlres
minimal intervention of the CPU for inpqtloutput? Th'ese two types of drawbapks cap
be overcome with a more efficient technique known 8s LIMA, which ads EIS if it hae
taken over control from the processor. Hence, the question is: why do we use RMA
interface? It is used primarily when a large amount off&ata is to be transferredgom
the I10 device to the Memary. ,' \

56

DMA Function

Although the CPU intervention in DMA is minimised, yet it must use the path
between interfaces that is the system bus. Thus, DMA involves an additional interface
on the system bus. A technique called cycle stealing allows the DMA interface to
transfer one data word at a time, after which it must return control of the bus to the
processor. The processor merely delays its operation for one memory cycle to allow
the directly memory I/O transfer to "steal" one memory cycle. When an I/O is
requested, the processor issues a command to the DMA interface by sending to the
DMA interface the following information (Figure 10):

Which operations (read or write) to be performed, using the read or write control
lines.

The address of I/O devices, which is to be used, communicated on the data lines.

The starting location on the memory where the information will be read or
written to be communicated on the data lines and is stored by the DMA interface
in its address register.

The number of words to be read or written is communicated on the data lines and
is stored in the data count register.

Registers

Multiplexed Data
data lines Register

Address
Address lincs 4 f register

DMA request 4

acknowledge b
Control Interrupt 4

logic
Read b

Write -+

Figure 10: DLMA block diagram

The DMA interface transfers the entire block of data, one word at a time, directly to or
from memory, without going through the processor. When the transfer is complete,
the DMA interface sends an interrupt signal to the processor. Thus, in DMA the
processor involvement can be restricted at the beginning and end of the transfer,
which can be shown as in the figure above. But the question is when should the DMA
take control of the bus?

For this we will recall the phenomenon of execution of an instruction by the
processor. Figure 11 below shows the five cycles for an instruction execution. The
Figure also shows the five points where a DMA request can be responded to and a
point where the interrupt request can be responded to. Please note that an interrupt
request is acknowledged only ,at one point of an instruction cycle, and that is at the

The Input 1 Output
System

breakpoints

Figure 11: RMA fl9d lrlferrupt Brcrltpalnts
q

The DMA lne~harliem FQII be confipu-ed into a vwlety of waya. Some passlbtlltfes are
shown below in Figure 12(a), in which all interfwczg share the same systelrl bus. The
DMA acts as the supportive processor and can use programmed 110 for exchanging
data between memory and I10 interface through DMA interface. But once again thls
spoils the basic advantage of DMA not using extra cycles for transferring information
from memory tolfrom DMA and DMA fromfto IIQ interfslce.

+'

($1 SingIe-bus, detached DMA

tb) Sin&-bus, integrated DMA-I/O

tc) I/Q bps

Figure 12: DMA Configuration

The Figure 12(b) configuration suggests advantages over the one shown above. In
these systems a path is provided between I10 interface and DMA interface, which
does not include the system bus. The DMA logic may become part of an I10 interface
and can control one or more I10 interfaces. In an extended concept an 110 bus can be
connected to this DMA interface. Such a configuration (shown in Figure 12 (c)) is
quite flexible and can be extended very easily. In both these configurations, the added
advantage is that the data between I10 interface and DMA interface is transferred off

. ., the system bus, thus eliminating the disadvantage we have witnessed for the first
configuration.

r Check Your Progress 2

r
1. Which of the VO techniques does not require an Interrupt Signal? Is this

I -
technique useful in Multiprogramming Operating Systems? Give reason.

2. What are the techniques of identifying the device that has caused the Interrupt?

The rnpw I OilPpu
System

.... ..
...
..

3.. What are the functions of 110 interface? What is DMA?

4. State T q e or False:

a) Daisy chain provides software poll.

b) d O mapped I10 scheme requires no additional lines from CPU to VO device
except for the system bus. 0

c) Most of the I10 processors have their own memory while a DMA module
does not have its own memory except for a register or a simple buffer area.

0
d) The advantage of interrupt driven I10 over programmed I10 is that in the

first the interrupt mechanisms free VO devices quickly. 0
2.7 INPUT-OUTPUT PROCESSORS

Before discussing I10 processors, let us briefly recapitulate the development in the
area of input/output functions. These can be summarised as:

1. The CPU directly controls a peripheral device.

2. Addition of I10 controller or I10 interface: The CPU uses programmed I10
without interrupts. CPU was separated from the details of external 110 interfaces.

3. Contained use of I10 controllers but with interrupts: The CPU need not spend
time waiting for an VO operation to be performed, increasing efficiency.

1
4. Direct access of I10 interface to the memory via DMA: CPU involvement

Basic Computer
Organisation

Data and
address

channel to
main memory

Multiplexer
channel

5. The CPU directs the I10 processors to execute an I10 program in memory. The
I10 processor fetches and executes these instructions without CPU intervention.
This allows the CPU to specify a sequence of I/O activities and to be interrupted
only when the entire sequence has been performed. With this architecture, a large
set of I/O devices can be controlled, with minimum CPU involvement.

With the last two steps (4 and 5), a major change occurs with the introduction of the
concept of an I/O interface capable of executing a program. For steps 5, the I10
interface is often referred to as an I/O channel and I/O processor.

Characteristics of YO Channels

The I10 channel represents'an extension of the DMA concept. An 110 channel has the
-
ability to execute I10 instructions, which gives complete control over the 110
operation. With such devi~es, the CPU does not execute I10 instructions. Such
instructions are stored in the main memory to be executed by a special-purpose
processor in the 110 channel itself. Thus, the CPU initiates an I10 transfer by
instructing the I/O channel to:execute a program in memory. Two types of 110
chaqnels are commonly used which can be seen in Figure 13 (a and b).

Data and
address

path to CPU

(a) Selector Channel

60

Control signal
path to CPU

- .

Controller

I Controller

Controller rn
(h) Multiplexer Channel ,

Figure 13: UO Channel Structures

A selector channel controls multiple high-speed devices and, at any one time, is
dedicated to the transfer of data with one of those devices. Each device is handled by a
controller or I/O interface. Thus the I/O channel serves in place of the CPU in
controlling these 110 controllers.

A multiplexer channel can handle I/O with multiple devices at the same time. If the
devices are slow then byte multiplexer'is used. Let us explain this with an example. If
we have three slow devices which need to send individual bytes as:

X1 X2 X3 X4 X5
Y1 Y2 Y3 Y4 Y5 ,.....
21 22 23 24 z 5

Then on a byte multiplexer channel they may send the bytes as X1 Y 1 Z1 X2 Y2
22 X3 Y3 23.. For high-speed devices, blocks of data from several devices are
interleaved. These devices are called block multiplexer.

INTERFACES

The external interface is the interface between the I/O interface and the peripheral
devices. This interface can be characterised into two main categories: (a) parallel
interface and (b) serial interface.

In parallel interface multiple bits can be transferred simultaneously. The parallel
interface is normally used for high-speed peripherals such as tapes and disks. The.
dialogues that take place across the interface include the exchange of control
information and data.

In serial interface only one line is used to transmit data, therefore only one bit is
transferred at a time. Serial printers are used for serial printers and terminals. With a
new generation of high-speed serial interfaces, parallel interfaces are becoming less
common.

In both cases, the I/O interface must engage in a dialogue with the peripheral. The
dialogue for a read or write operation is as follows:

A control signal is sent by I10 interface to the peripheral requesting the
permission to send (for write) or receive (for read) data.

The peripheral acknowledges the request.

The Input I Output
S) stem I

The data are transferred from I/O interface to peripheral (for write) or from
peripheral to I/O interface (for read).

The peripheral acknowledges receipt of the data.
I

The connection between an I/O interface in a computer system and external devices
can be either point-to-point or multipoint. A point-to-point interface provides a
dedicated line between the 1/0 interface and the external device. For example 1
keyboard, printer and external modems axe point-to-point links. The most common
serial interfaces are RS-232C and EIA-232,

A multipoint external interface used to support external mass storage devices (such as
disk and tape drives) and multimedia devices (such as CD-ROM, video, audio).

Bssie Cnmputrr
Orgallisation

Check Your Progress 3

1. What is the need of 110 channels?
..
..
..
..

2. What is the need of external Communication Interfaces?

T h i ~ unit Is totally d~vpted t~ the 110 of c~mputer system. In this unit we have
discussed the identification of IIQ interface, description o f V 6 techniques,such a9
pr~grpmmed 110, interrupt-drlven VO and direct memory access. These techniques we
usefui for increasing the efficiency of the input-output transfer process. The concepts
of device Qivers f ~ r all types of operating systems aqd device controllers we also
discussed with this pnit. We have also defined an ipput/~ufput processor, the external
communi~ation intgrkoes spch as sgrial and pasallel interfaces and Intempt
processing. The VQ processors are thp most p~werfkl IIQ interfaces that can execute
the complete 110 instructions. You oan always refer to fkrther reading for detall
d9siy.

Check Your Progress 1 I

1. The functions of I10 interfaces are to.provide:

e Timing and control signal.

Communication with processor and I10 devices.

Support for smoothing the speed gap between CPU and Memory using
buffering.

Error detection.

2. (a) False (b) True (c) True (d) True (e) True (f) False (g) True (h) False

3. A device driver is a software module which manages the communicati~n with,
and the control of, a specific I/Q device, or type . . 9Pdevice. The diffprenee
between device driver and controlfer are:

One device controller cafi control many devices, whereas drivers g g Pevioe
specific.

Device contr~llers qre a mow int~lligent hwdware-spfiwase c~mbination ?ban
device drivers.

c 110 controllers allow difFerent types . . wc! upgradetibitit), , . opdgviogs whereas
&vice driver is devige specifi~:

Check Your Progress 2

1. The technique Programmed I10 does not require an Interrupt. It is very inefficient
for Multiprogramming environment as the processor is busy waiting for the I10
to complete, while this time would have been used for instruction execution of
other programs.

2. The techniques for recognition of interrupting devicelconditions can be:

Multiple Interrupt Lines: Having separate line for a device, thus direct
recognition.

Software Poll: A software driven roll call to find from devices whethar it has
made an interrupt request.

The Input 1 Output
!System

Daisy Chain: A hardware driven passing the buck type slgnal that moves
through the devices connected serially. The device on receipt of slgnal on hls
turn, if has interrupt informs its address.

a Bus Arbitration: In this scheme, the I10 interface requests for control of the
Bus. This is a common process when I10 processors are usad.

3. The functions of 110 interface are:

a Control and timing signals

a CPU communications

a 110 device communication

a Data buffering

In-built error-detection mechanism.

DMA is an VO technique that minimises the CPU intervention at the beginning
and end of a time consuming VO. One, commonplace where DMA is used is
when I10 is required from a Hard Disk, since one single YO request requires 8
block of data transfer which on the average may take a few milliseconds. Thus,
DMA will free CPU to do other useful tasks while I10 is going on.

4, a) False
b) False
c) True
d) False

Check Your Progress 3

1. The I10 channels were popular in dder mainframes, which included many I/O
devices and I/O requests from many users. The VO channel takes control of all
V0 instructions from the main processor and controls the VO requests. It is
mainly needed in situations having many YO devices, which may bpi sharsd
among multiple users.

2. The external interfaces are the standard interfaces that are used to connect third
party or other external devices. The standardization In this area is a must.

