UNIT 3 ALU ORGANISATION

Structure Page No.
3.0 Introduction ' 53
3.1 Objectives , 53
3.2 ALU Organisation 53

3.2.1 . A Simple ALU Organization
3.22 A Sample ALU Design

3.3 Arithmetic Processors - 62
3.4 Summary 63

3.5 Solutions/ Answers 64

3.0 INTRODUCTION

By now we have discussed the instruction sets and register organisation followed by a
discussion on micro-operations and instruction execution. In this unit, we will first
discuss the ALU organisation. Then we will discuss thé floating point ALU and
arithmetic co-processors, which are commonly used fgr floating point computations.

This. unit provides a detailed view on implementation of simple micro-opeggtions that
include register—transfer, arithmetic, logic and shift micro-operation. Finally, the
construction of a simple ALU is given. Thus, this unit provides you the basic insight
into the computer system. The next unit covers details of the control unit. Together
-hese units describe the two most important components of CPU: the ALU and the
iCU.

3.1 OBJECTIVES

After going through this unit, you will be able to:

» describe the basic org\a.nisation of ALU;

» discuss the requirements of a floating point ALU;
» define the term arithmetic coprocessor; and

» create simple arithmetic logic circuits.

3.2 ALU ORGANISATION

As discussed earlier, an ALU performs simple arithmetic-logic and shift operations.
The complexity of an ALU depends on the type of instruction set which has been
realized for it. The simple ALUs can be constructed for fixed-point numbers. On the
other hand the floating-point arithmetic implementation requires more complex
control logic and data processing capabilities, i.e., the hardware. Several micro-
processor families utilize only fixed-point arithmetic capabilities in the ALUs. For
1Joating point arithmetic or other complex functions they may utilize an auxiliary
special purpose unit. This unit is called arithmetic co-processor. Let us discuss all
these issues in greater detail in this section.

3.2.1 A Simple ALU Organisation

An ALU consists of circuits that perform data processing micro-operations. But how
are these ALU circuits used in conjunction of other registers and control unit? The
,’/'

53

The Central

Processing Unit simplest organisation in this respect for fixed point ALU was suggested by John von

Neumann in his IAS computer design (Please refer to Figure 1).

Bus
Accumulator [€¢— Multiplier . Data Register
Register (AC) , Quotient [(DR)
Register (MQ)
A
Parallel Adder —>
" and other Logic > Contro| Unit | . >
Control Circuits
. Flags —J .
Signals

Figure 1: Structure of a Fixed point Arithmetic logic unit

The above structure has three registers AC, MQ and DR for data storage. Let us
assume that they are equal to one word each. Please note that the Parallel adders and
other logic circuits (these are the arithmetic, logic circuits) have two inputs and only
one output in this diagram. It implies that any ALU operation at most can have two
input values and will generate single output along with the other status bits. In the
present case the two inputs are AC and DR registers, while output is AC register. AC
and MQ registers are generally used as a single AC.MQ register. This register is
capable of left or right shift operations. Some of the micro-operations that can be

- defined on this ALU are:
Addition ~ : AC € AC+DR
Subtraction : AC € AC-DR
AND : AC €< AC"DR
OR - ~: AC€ ACVDR
Exclusive OR : AC € AC (+) DR
NOT : AC € AC

In this ALU organisation multiplication and division were implemented using shift-
add/subtract operations. The MQ (Multiplier-Quotient register) is a special register
used for implementation of multiplication and division. We are not giving the details
of how this register can be used for implementing multiplication and division
algorithms. For more details on these algorithms please refer to further readings. One
such algorithm is Booth’s algorithm and you must refer to it in further readings.

For multiplication or division operations DR register stores the multiplicand or divisor
respectively. The result of multiplication or division on applying certain algorithm can

54

finally be obtained in AC.MQ register combination. These operations can be
" represented as:

Multiplication : AC.M) € DR x MQ

Division : ACMQ € MQ~+DR

DR is another important register, which is used for storing second operand. In fact it
acts as a buffer register, which stores the data brought from the memory for an

instruction. [n machines where we have general purpose registers any of the registers
can be utilized as AC, MQ and DR.

Bit Slice ALUs

It was feasible to manufacture smaller such as 4 or 8 bits fixed point ALUs on a single
IC chip. If these chips are designed as expendable types then using these 4 or 8 bit
ALU chips we can make 16, 32, 64 bit array like circuits. These are called bit- slice
ALU:s.

The basic advantage of such ALUs is that these ALUs can be constructed for a desired
word size. More details on bit-slice ALUs can be obtained from further readings.

1. A multiplication operation can be implemented as a logical operations |:|

Check Your Progress 1

State True or False

2. The multiplier-quotient register stores the remainder for a division operation. D
3. A word is processed sequentially on a bit slice ALU. I:I

3.2.2 A Sample ALU Design

The basis of ALU design starts with the micro-operation implemen'taﬁon. So, let us
first explain how the bus can be used for Data transfer micro-operations.

A digital computer has many registers, and rather than connecting wires between all
registers to transfer information between them, a common bus is used. Bus is a path
(consists of a.group of wires) one for each bit of a register, over which information is
transferred, from any of several sources to any of several destinations. In general the.
size of this data bus should be equal to the number of bits in a general purpose
register. ’

A register is selected for. the transfer of data through bus with the help of control
signals. The common data transfer path, that is the bus, is made using the
multiplexers. The select lines are connected to the control inputs of the multiplexers
and the bits of one register are chosen thus allowing multiplexers to select a specific
source register for data transfer.

The construction of a bus system for four registers using 4x1 multiplexers is shown
below. Each register has four bits, numbered 0 through 3. Each multiplexer has 4 data
inputs, numbered 0 through 3, and two control or selection lines, Co and C,. The data
inputs of 0™ MUX are connected to the corresponding 0™ input of every register to
form four lines of the bus. The 0" multiplexer multiplexes the four 0™ bits of the
registers, and similarly for the three other multiplexers.

Since the same selection lines C, and C, are connected to all multiplexers, therefore
they choose the four bits of one register and transfer them into the four-line common
bus.

ALU Organisation

55

The Central
Processing Unit

56

Register A Register B Register C Register D

—
N
W

ol1(213 0 0111} 2]3 0

IR EEEEEL;

¥ v

01 2 3 01 2 3 01 2 3 01 2 3
4x1 Cax1 4x1 4x1
MUX 0 A MUX 1 MUX 2 MUX 3

Co

! ve ¥

4-line common bus

Figure 2: Implementation of BUS

When C; Cy= 00, the o data input of all multiplexers are selected and this causes the
bus lines to receive the content of register A since the outputs of register A are
connected to the O™ data inputs of the multiplexers which is then applied to the output -
that forms the bus. Similarly, when C, C, = 01, register B is selected, and so on. The
following table shows the register that is selected for each of the four possible values
of the selection lines:

C, Co Register Selected
0 A
1 B
1 0 C
1 1 D

Figure 3: Bus Line Selection

To construct a bus for 8 registers of 16 bits each, you would require 16 multiplexers,
one for each line in the bus. The number of multiplexers needed to construct the bus is
equal to the number of bits in each register. Each multiplexer must have eight data
input lines and three selection lines (2 * = 8) to multiplex one bit in the eight registers.

Implementation of Arithmetic Circuits for Arithmetic Micro-operation
An arithmetic circuit can be implemented using a number of full adder circuits or

parallel adder circuits. Figure 4 shows a logical implementation of a 4-bit arithmetic
circuit. The circuit is constructed by using 4 full adders and 4 multiplexers.

C.
S,
S,
a, Xo co
S, FA
S,
b, 0 4xl
(o 1 MUX Y. G
2
3
a, X, cl
S, FA
S,
b, 0. 4x1
L[>-. 1 MUX Y, C,
2
3
a X: G,
S FA
S,
b. 0o 4xl!
Lpo I MUX Y, G
. 2
3
a, X, c,
gl FA
b 00 4x1
’ T[): 1 MUX Y, C.
2
3

Logic 0

Figure 4: A Four-bit arithmetic circuit

ALU Organis:ation

The diagram of a 4-bit arithmetic circuit has four 4x1 multiplexers and four full
adders (FA). Please note that the FULL ADDER is a circuit that can add two input
bits and a carry-in bit to produce one sum-bit and a carry-out-bit.

So what does the adder do? It just adds three bits. What does the multiplexer do? It
controls one of the input bits. Thus, such combination produces a series of micro-

operations.

Let us find out how the multiplexer control lines will change one of the Inputs for
Adder circuit. Please refer to the following table. (Please note the convention VALID
ONLY FOR THE TABLE are that an uppercase alphabet indicates a Data Word,

whereas the lowercase alphabet indicates a bit.)

57

' The Central

~ Processing Unit Control Output of 4 x 1 Multiplexers _7 Y input Comments k
! | Input : to
Si | So | MUX(a) | MUX(b) | MUX(c) | MUX(d) | Adder
The data word B
0/ 0 bo b, b, b, B is input to Full
Adders
_ _ _ . — 1’s complement
01 b, b, b, b, B | of Bis input to
Full Adders
Data word 0 is
1|0 0 0 0 0 0 mnput to Full
Adders
Data word 1111
11 1 1 1 1 Fy = Fy 1s input to
Full Adders

Figure 5: Multiplexer Inputs and Output of the Arithmetic Circuit of Figure 4

Now let us discuss how by coupling carry bit (C;,) with these input bits we can obtain
various micro-operations.

Input to Circuits

Register A bits as ay,a,, a, and a; in the corresponding X bits of the Full Adder
(FA). '

Register B bits as given in the Figure 5 above as in the corresponding Y bits of
the FA.

Please note each bit of register A and register B is fed to different full adder
unit.

Please also note that each of the four inputs from A are applied to the X inputs
of the binary adder and each of the four inputs from B are connected to the data
inputs of the multiplexers. It means that the A input directly goes to adder but B
input can be manipulated through the Multiplexer to create a number of
different input values as given in the figure above. The B inputs through
multiplexers are controlled by two selection lines S; and S, Thus, using various
combinations of S, and Sy we can select data bits of B, complement of B, 0
word, or word having All 17s.

The input carry Ci,, which can be equal to 0 or 1, goes to the carry input of the
full adder in the least significant position. The other carries are cascaded from
one stage to the next. Logically it is the same as that of addition performed by
us. We do pass the carry of lower Jigits addition to higher digits. The output of
the binary adder is determined from the following arithmetic sum: .

D=X+Y+(,
R
U=A+Y+Cy

Ey controlling the value of Y with the two selection lines S, and S, and making C;,
equal to 0 or 1, it is possible to implement the eight arithmetic micro-operations listed
in the truth'table. :

58

£
!

I'S; [So |Cw | Y |D=A+Y +C,, | Equivalent Micro-Operation
val Micro-Operation | Name
0,070 B |{D=A+B R € RI+R2 Add
00 1 B D=A+B+1|R € RI+R2+1 | Add with carry
01 0 B |D=A+B R €R1+R2 Subtract with borrow
- = R €R1+2s
0 1)1 B |D=A+ B+ complement of R2 | Subtract
11010 0 |D=A R € RI Transfer
0 1 0 |[D=A+1 R €R1+1 Increment
1|{1{0 | |D=A-1 R € R1 +(All 1s) | Decrement
1 1 I 1 LD =A R € Rl :ransfer

Figure 6: Arithmetic Circuit Function Table
Let us refer to some of the cases in the table above.

When S,S, = 00, input line B is enabled and its value is applied to the Y inputs of the
full adder. Now,

If input carry C;,= 0, the output willbeD=A +B
If input carry Cy, = 1, the output willbe D=A + B+ 1.

When 8,S,= 01, the complement of B is applied to the Y inputs of the full adder. So
i IfCip= 1, then output D= A + B + 1. This is called subtract micro-operation. (Why?)

Reason: Please observe the following example, where A = 0111 and B=0110, then

" B=1001. The sum will be calculated as:

0111 (Value of A)
1001 (Complement of B)
1 0000 + (Carry in=1) = 0001

Ignore the carry out bit. Thus, we get simple subtract operation.

IfCipp=0,then D= A + B. This is called subtract with borrow micro-operation.
(Why?). Let us look into the same addition as above:

0111 (Value of A)
1001 (Complement of B)
1 0000 + (Carry in =0) = 0000

This operation, thus, can be considered as equivalent to:
D=A+B . _
=> D=(A-1)+(B+1)

=> D =(A - 1)+ 2’s complement of B
=> D=(A~-1)-~B Thus, is the name complement with Borrow

When S;S; = 10, input value 0 is applied to Y inputs of the full adder.

IfC;,=0, thenoutput D=A+0+C,, => D=A
IfCy,=1,thenD=A+0+1=>D=A+1

The first is a simple data transfer micro-operation; while the second is an increment
micro-operation.

ALU Organisation

59

The Central
Processing Unit

60

When S,8,= 11, input word all 1’s is applied to Y inputs of the full adder.

IfCi,=0, thenoutput D= A + Al (Is) + C;, =>D=A -1 (How? Let us
explain with the help of the following example).

Example: Let us assume that the Register A is of 4 bits and contains the value 0101
and it is added to an all (1) value as:

0101
1111
1_0100

The 1 is carry out and is discarded. Thus, on addition with all (1’s) the number has
actually got decremented by one. '

IfCyp=1,thenD=A + All(Is) +1 =>D=A

The first is the decrement micro-operation; while the second is a data transfer micro-
operation.

Please note that the micro-operation D = A is generated twice, so there are only seven
distinct micro-operations possible through the proposed arithmetic circuit.

Implementation of Logic Micro-operations

For implementation, let us first ask the questions how many logic operations can be
performed with two binary variables. We can have four possible combinations of
input of two variables. These are 00, 01, 10, and 11. Now, for all these 4 input
combinations we can have 2* = 16 output combinations of truth-values for a function.
This implies that for two variables we can have 16 logical operations. The above
stated fact will be clearer by going through the following figure.

I, 1, I, Ip Function Operatibn Comments
0 0 0 0 Fo=0 R€ 0 Clear
0 0 0 1 F] =Xy R(— Rll\R2 AND
0 0 1 0 F=x ; R¢& R,AR_2 R, AND with
complement R,
0 0 1 Fi=x R € R, Transfer of R,
0 1 0 0 Fi=X y R ¢ Rl/\Rz R, AND with
: complement R;
0 1 0 1 Fs= R< R, Transfer of R,
0 1 1 0 Fo=x®y RERB R Exclusive OR
0 | 1 1 F;=x+y RER VR, OR
1 0 0 0 Fg=]x+yi R€ (R, VR, NOR
/ 1 0 O 1 Fo = (x D y) R& (Rl) Rz) Exclusive NOR
1 0 1 0 Fyp = ; R € R—2 Complement of R,
1 0. 1 1 F” =x+ S; R 6‘ RIVEZ— R] OR with
. compiement R,
1 1 0 0 F,= X RE& El' Complement of R,
1 1 . 0 1 F|3 =; +y R & EVRZ Rz OR with
complement R,
K 1 1 0 Fio = (x.y) R€ (R, AR, NAND
1 1 1 1 Fis=1 R € All1’s Set all the Bits to 1

Figure 7: Logic micro-operations on two inputs

Please note that in the figure above the micro-operations are derived by replacing the
x and y of Boolean function with registers R1 and R2 on each corresponding bit of the
registers R1 and R2. Each of these bits will be treated as binary variables.

In many computers only four: AND, OR, XOR (exclusive OR) and complement
micro-operations are implemented. The other 12 micro-operations can be derived
from these four micro-operations. Figure 8 shows one bit, which is the i” bit stage of
the four logic operations. Please note that the circuit consists of 4 gates and a 4 x 1
MUX. The i” bits of Register R1 and R2 are passed through the circuit. On the basis
of selection inputs Spand S, the desired micro-operation is obtained.

Si— ax1 emation
S, S| Output The Operation
Sy — MUX -
i * bit of R, —— ; .
i*bit of R, _D—' 0 0 0| F=R AR, | AND Operation
h‘D_ 1 L F 0 1 | F=R,VR, | OR Operation
»—-—))> 2 1 0| F=R®R, | XOR Operation
1 1|F=R Complement of
3) Register R,
{a) Logic Diagram (b) Functional representation

Figure 8: Logic diagram of one stage of logic circuit @
Implementation of a Simple Arithmetic, Logic and Shift Unit

So, by now we have discussed how the arithmetic and logic micro-operations can be
implemented individually. If we combine these two circuits along with shifting loglc
then we can have a possible simple structure of ALU. In effect ALU is a
combinational circuit whose inputs are contents of specific registers. The ALU
performs the desired micro-operation as determined by control signals on the input
and places the results in an output or destination register. The whole operation of ALU
can be performed in a single clock pulse, as it is a combinational circuit. The shift
operation can be performed in a separate unit but sometimes it can be made as a part
of overall ALU. The following figure gives a simple structure of one stage of an ALU.

s,"
s,
s, 1
One stage
of arithmetic | A
circuit
(ith stage)
o +xlI
1 MUX
Cl > LF:
i -
One stage
of Logic B, Shift right
X; circuit
- th
12 . : (ith stage) Shift left
X
Xin

Figure 9: One stage of ALU with shift capability

Please note that in this figure we have given reference to two previous figures for
arithmetic and logic circuits. This stage of ALU has two data inputs; the i® bits of the
registers to be manipulated. However, the (i — 1)® or (i+1)™ bit is also fed for the case
of shift micro-operation of only one register. There are four selection lines, which

ALU Organisation

61

L]

determine what micro-operation (arithmetic, logic or shift) on the input. The F; is the
resultant bit after desired micro-operation. Let us see how the value of F; changes on
the basis of the four select inputs. This is shown in Figure 10:

The Central
Processing Unit

Please note that in Figure 10 arithmetic micro-operations have both S; and S, bits as
zero. Input C; is important for only arithmetic micro-operations. For logic micro-
operations S, S; values are 01. The values 10 and 11 cause shift micro-operations.
For this shift micro-operation S, and S, values and C; values do not play any role.

rS; S, 8§ S G F "~ Micro- Name
operation
0 0 0 0 O0]|F=x R€R, Transfer M
0 0 0 0 1 |[F=x+1 R&R;+1 Increment
0 0 0 1 O |F=x+y R€R,+R, Addition .
0 0 0 1 1 |F=xt+y+l R&R;+R+1 Addition Arithmetic
with carry Micro-operation
o 0 1 0 o o n.p Subtract
=x+
F=xty RER+R, with borrow
o 0 1 0 1 F=x+(y +1) R€R; -R; Subtract
0 0 I 1 O{F=x-1 R€R -1 Decrement J
0 0 1 1 1 | F=x R€ER, Transfer
0 1 0 0 - |F=xy R€R;AR; AND B
0 1 0 1 - | F=x+ty R&ER; v R, OR Logic
60 1 1 0 -IlF=x®y R€R,®R, Exclusive Micro-operation
OR
0 1 1 1 -lp. ; RE El Complement | |
1 0 - - - |F=8hix) R€ Shi(R;) Shift left Shift Micro-
1 1 - - - }F=S8hdy R&Shr(Ry) Shift right | operations

Figure 10: Micro-operaﬁons’ performed by a Sample ALU

3.3 ARITHMETIC PROCESSORS

The questions in this regard are: “What is an arithmetic processor?” and, “What is the
need for arithmetic processors?”

A typical CPU needs most of the control and data processing hardware for
implementing non-arithmetic functions. As the hardware costs are directly related to
chip area, a floating point circuit being complex in nature is costly to implement. They
need not be included in the instruction set of a CPU. In such systems, floating-point
operations were implemented by using software routines.

This implementation of floating point arithmetic is definitely slower than the hardware
implementation. Now, the question is whether a processor can be constructed only for
arithmetic operations. A processor, if devoted exclusively to arithmeticfunctions, can
be used to implement a full range of arithmetic functions in the hardware at a
relatively low cost. This can be done in a single Integrated Circuit. Thus, a special
purpose arithmetic processor, for performing only the arithmetic operations, can be
constructed. This processor physically may be separate, yet can be utilized by the
CPU to execute complex arithmetic instructions. Please note in the absence of
arithmetic processors, these instructions may be executed using the slower software
routines by the CPU itself. Thus, this auxiliary processor enhances the speed of
execution of programs having a lot of complex arithmetic computations.

62

An arithmetic processor also helps in reducing program complexity, as it provides a ALU Organisation

richer instruction set for 2 machine. Some of the instructions that can be assigned to
arithmetic processors can be related to the addition, subtraction, multiplication, and
division of floating point numbers, exponentiation, logarithms and other trigonometric

functions.
How can this arithmetic processor be connected to the CPU?
Two mechanisms are used for connecting the arithmetic processor to the CPU.

If an arithmetic processor is treated as one of the Input / Qutput or peripheral units
then it is termed as a peripheral processor. The CPU sends data and instructions to the
peripheral processor, which performs the required operations on the data and
coramunicates the results back to the CPU. A peripheral processor has several
registers to communicate with the CPU. These registers may be addressed by the CPU
as Input /Output register addresses. The CPU and peripheral processors are normally
quite independent and communicate with each other by exchange of information using
data transfer instructions. The data transfer instructions must be specific instructions
in the CPU. This type of connection is called loosely coupled.

On the other hand if the arithmetic processor has a registér and instruction set which
can be considered an extension of the CPU registers and instruction set, then it is
called a tightly coupled processor. Here the CPU reserves a special subset of éode for
arithmetic processor. In such a system the instructions meant for arithmetic processor
are fetched by CPU and decoded jointly by CPU and the arithmetic processor, and
finally executed by arithmetic processor. Thus, these processors can be considered a
logical extension of the CPU. Such attached arithmetic processors are termed as co-
Processors.

The concept of co-processor existed in the 8086 machine till Intel 486 machines
where co-processor was separate. However, Pentium at present does not have a
separate co-processor. Similarly, peripheral processors are not found as arithmetic
processors in general. However, many chips are used for specialized I/O architecture.
These can be found in further readings.

Check Your Progress 2

1. Draw the logic circuit for a ALU unit. -

2. What is an Arithmetic Processor?

..

..

34 SUMMARY

Ini this unit, we have discussed in detail the hardware implementation of micro-
operations. The unit starts with an implementation of bus, which is the backbone for
any register transfer operation. This is followed by a discussion on arithmetic circuit
‘and micro-operation thereon using full adder circuits. The logic micro-operation
irnplementation has also been discussed. Thus, leading to a logical construction of a
simple arithmetic — logic —shift unit. The unit revolves around the basic ALU with the
help of the units that are constructed for the implementation of micro-operations.

In the later part of the unit, we discussed the arithmetic processors. Finally, we have
presented a few chipsets that support the working of a processor for input/output
finctions from key board, printer etc.

The Central

Processing Unit 3.5 SOLUTIONS/ ANSWERS

Check Your Progress 1

1. False
2. False
3. True

Check Your Progress 2

1. The diagram is the same as that of Figure 9.
2. Arithmetic processor performs arithmetic computation. These are support
processors to a computer, '

