Data Representatian

UNIT 2 DATA REPRESENTATION

Structure Page Nos.
2.0 Introduction 31
2.1, Objectives 31
2.2 Data Representation 31
2.3 Number Systems: A Look Back 32
2.4 Decimal Representation in Computers 36
2.5 Alphanumeric Representation 37
2.6 Data Representation For Computation - 39

2.6.1 Fixed Point Representation
2.6.2 Decimal Fixed Point Representation
2.6.3 Floating Point Representation
2.6.4 Error Detection And Correction Codes
2.7 Summary 56
-2.8 Solutions/ Answers 56

2.0 INTRODUCTION

In the previous Unit, you have been introduced to the basic configuration of the.
Computer system, its components and working. The concept of instructions and their
execution was also explained. In this Unit, we will describe various types of binary
notations that are used in contemporary computers for storage and processing of data.
As far as instructions and their execution is concerned it will be discussed in detailed
in the later blocks. '

The Computer System is based on the binary system; therefore, we will be devoting
this complete unit to the concepts of binary Data Representation in the Computer
System. This unit will re-introduce you to the number system concepts. The number
systems defined in this Unit include the Binary, Octal, and Hexadecimal notations. [n
addition, details of various number representations such as floating-point
representation, BCD representation and character-based representations have been
described in this Unit. Finally the Error detection and correction codes have been
described in the Unit.

2.1 OBJECTIVES

At the end of the unit you will be able to:

Use binary, octal and hexadecimal numbers;
. Convert decimal numbers to other systems and vice versa;
Describe the character representation in computers;
Create fixed and floating point number formats;
Demonstrate use of fixed and floating point numbers in performing arithmetic
operations; and
. Describe the data error checking mechanism and error detection and correction
codes.

2.2 DATA REPRESENTATION

The basic nature of a Computer is as an information transformer. Thus, a computer
must be able to take input, process it and produce output. The key questiors here are:

31

Introduction to Digital
“Circuits

How is the Information represented in a computer?
Well, it is in the form of Binary Digit popularly called Bit.
How is the input and output presented in a form that is understood by us?

One of the minimum requirements in this case may be to have a representation for
characters. Thus, a mechanisim that fulfils such requirement is needed. In Computers
information is represented in digital form, therefore, to represent characters in
computer we need codes. Some common character codes are ASCII, EBCDIC, ISCII
etc. These character codes are discussed in the subsequent sections.

How are the arithmetic calculations performed through these bits?

We need to represeht numbers in binary and should be able to perform operations on
these numbers. :

Let us try to answer these questions, in the following sections. Let us first recapitulate
some of the age-old concepts of the number system.

2.3 NUMBER SYSTEMS: A LOOK BACK

Number system is used to represent information in quantitative form. Some of the
common number systems are binary, octal, decimal and hexadecimal.

A number system of base (also called radix) r is a system, which has r distinct
symbols for r digits. A string of these symbolic digits represents a number. To
determine the value that a number represents, we multiply the number by its place
value that is an integer power of r depending on the place it is located and then find
the sum of weighted digits. ' '

Decimal Numbers: Decimal number system has ten digits represented by
0,1,2,3,4.5,6,7,8 and 9. Any decimal number can be represented as a string of these
digits and since there are ten decimal digits, therefore, the base or radix of this system
is 10.

Thus, a string of number 234.5 can be represented as:
2x10%+3x10"+4x10°+5x 10"

Binary Numbers: In binary numbers we have two digits 0 and 1 and they can also be
represented, as a string of these two-digits called bits. The base of binary number
system is 2.

For example, 101010 is a valid binary number.

" Decimal equivalent of a binary number:

For converting the value of binary nuimmbers to decimal equivalent we have to find its
value, which is found by multiplying a digit by its place value. For example, binary
number 101010 is equivalent to:

1x234+0x2%+1x2°+ 0= 22 +1x2'+0x2°
=1x32 +0x16 + 1x8 + 0x4 + [x2 + 0x|
=32+8+2

=42 jn decimal.

Octal Numbers: An octal system has eight digits represented as 0,1,2,3,4,5,6,7. For
finding equivalent decimal number of an octal number one has to find the quantity of
the octal number which is again calculated as:

Octal number (23.4) Data Representation

(Please note the subscript 8 indicates it is an octal number, similarly, a subscript 2 will
indicate binary, 10 will indicate decimal and H will indicate Hexadecimal number, in
case no subscript is specified then number should be treated as decimal number or else
whatever number system is specified before it.)

Decimal equivalent of Octal Number:

(23.4%

= 2x8'+3x 8% +4x 8"
=2x8+3x1+4x1/8
=16+3+0.5

= (19.5)0

Hexadecimal Numbers: The hexadecimal system has 16 digits, which are represented
as 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F. A number (F2)y is equivalent to

Fx16' +2x16°

=(15x16)+2 //(AsF is equivalent to 15 for decimal)

=240 +2
=(242),,

Conversion of Decimal Number to Binary Number: For converting a decimal
number to binary number, the integer and fractional part are handled separately. Let us
explain it with the help of an example:

Example 1: Convert the decimal number 43.125 to binary number.

Solution:

Integer Part = 43 Fraction 0.125

On multiplying the fraction repeatedly
and separating the integer as you get it
till you have all zeros in fraction

On dividing the quotient of integer part
repeatedly by 2 and separating the
remainder till we get 0 as the quotient

Integer Part Quotient on division by 2 Remainder on division by 2
43 . 21 1
21 10 1
10 05 0
05 02 |
02 01 0
01 00 " Read

Please note in the figure above that: _
. The equivalent binary to the Integer part of the number is (10101 1)2
. You will get the Integer part of the number, if you READ the remainder in the

direction of the Arrow.

33

Introduction to Digital
Circuits

34

Fraction | On Multiplication by 2 | Integer part after Read
Multiplication
0.125 0.250 0 l
0.250 0.500 0
0.500 1.000 1

Please note in the figure above that:

. The equivalent binary to the Fractional part of the number is 001.

. You will get the fractional part of the number, if you READ the Integer part of
the number in the direction of the Arrow.

Thus, the number (101011.001), is equivalent to (43.125),,.

You can cross check it as follows:

I1x2°+052 +1x22+0x22+1x2'+ 1 x2°40x2"+0x22+1 x23
=32+0+8+0+2+1+0+0+1/8

= (43.125)

One easy direct method in Decimal to binary conversion for integer part is to first
write the place values as:

v26 25 24 23 22 21 20

‘ 64 32 16 8 4 2 1

Step 1: Take the integer part e.g. 43, find the next lower or equal binary place value
number, in this example it is 32. Place 1 at 32.

Step 2: Subtract the place value from the number, in this case subtract 32 from 43,
which is 11.

Step 3: Repeat the two steps above till you get 0 at step 2.

Step 4: On getting a 0 put O at all other place values.

These steps are shown as:

32 |16 |8 4 2 |1

32 |16 18 |4 |2 |1
N
I o1 - |11-8=3
- | - - [32=
- - 1 |1-1=0

ﬁ 0 1 0 1 1 J is the required number.

You can extend this logic to fractional part also but in reverse order. Try this method
with several numbers. It is fast and you will soon be accustomed to it and can do the
whole operation in single iteration.

Conversion of Binary to Octal and Hexadecimal: The rules for these conversions
are straightforward. For converting binary to octal, the binary number is divided into

groups of three, which are then combined by place value to generate equivalent octal. Data Representation

For example the binary number 1101011.00101 can be converted to Octal as:

1 101 | 011 . | 001 |01
001 | 101 | 011 . | 001|010
1 5 3 . 1 2

(Please note the number is unchanged even though we have added 0 to complete the
grouping. Also note the style of grouping before and after decimal. We count three
numbers from right to left while after the decimal from left to right.)

Thus, the octal number equivalent to the binary number 1101011.00101 is (153.12),

Similarly by grouping four binary digits and finding equivalent hexadecimal digits for
it can make the hexadecimal conversion. For example the same number will be
equivalent to (6B.28)y..

110 | 1011 . 100101

0110 | 1011 . | 0010 | 1000

6 11 .12 8

6 B 2 8 (11in hexadecimal is B)

Thus equivalent hexadecimal number is (6B.28)y

Conversely, we can conclude that a hexadecimal digit can be broken down into a
string of binary having 4 places and an octal can be broken down into string of binary
having 3 place values. Figure 1 gives the binary equivalents of octal and hexadecimal

numbers.
Octal Number | Binary coded Octal He&&:(:;il:al Bg‘:x?ézgg(;d
0 000 0 0000
1 001 1 0001
2 010 2 0010
3 011 3 0011
4 100 4 0100
5 101 5 0101
6 110 6 0110
7 111 7 0111
8 1000
9 . 1001
-Decimal-
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

e
e

Figure 1: Binary equivalent of octal and hexadecimal digits

Introduction to Digital
Circuits

Check Your Progress 1

1) Convert the following binary numbers to decimal.
iy 1100.1101
ii) 10101010

...

...

2) Convert the following decimal numbers to binary.
i)y 23
ii) 49.25
iii) 892

...

3) Convert the numbers given in question 2 to hexadecimal from decimal or from
the binary. ‘

...
D D T T Y P T T P Py T P P T T LT T T TP P PO PO PP IO PPT SR
...

...

2.4 DECIMAL REPRESENTATION IN
COMPUTERS

The binary number system is most natural for computer because of the two stable
states of its components. But, unfortunately, this is not a very natural system for us as
we work with decimal number system. So, how does the computer perform the
arithmetic? One solution that is followed in most of the computers is to convert all
input values to binary. Then the computer performs arithmetic operations and finally
converts the results back to the decimal number so that we can interpret it easily. s
there any alternative to this scheme? Yes, there exists an alternative way of
performing computation in decimal form but it requires that the decimal numbers
should be coded suitably before performing these computations. Normally, the
decimal digits are coded in 7-8 bits as alphanumeric characters but for the purpose of
arithmetic calculations the decimal digits are treated as four bit binary code.

As we know 2 binary bits can represent 2° = 4 different combinations, 3 bits can
represent 2° = 8 combinations, and similarly, 4 bits can represent 2*=16
combinations. To represent decimal digits into binary form we require 10
combinations, but we need to have a 4-digit code. One such simple representation may
be to use first ten binary combinations to represent the ten decimal digits. These are
popularly known as Binary Coded Decimals (BCD). Figure 2 shows the binary coded
decimal numbers.

Decimal Binary Coded Decimal
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001
10 0001 0000
11 0001 0001
12 0001 0010
13 0001 0011
20 0010 0000
30 0011 0000

Let us represent 43.125 in BCD.

Figure 2: Binary Coded Decimals (BCD)

4

-~

J

1

2

]

0100

0011

0001

0010

o101

Compare the equivalent BCD with equivalent binary value. Both are different.

2.45 ALPHANUMERIC REPRESENTATION

But what about alphabets and special characters like +, -, * etc.? How do we represent
these in a computer? A set containing alphabets (in both cases), the decimal digits (10
in number) and special characters (roughly 10-15 in numbers) consist of at least 70-80

elements.

ASCII

One such standard code that allows the language encoding that is popularly used is
ASCII (American Standard Code for Information Interchange). This code uses 7 bits

Data Representation

Introduction to Digital
Circuits

to represent 128 characters, which include 32 non-printing control characters,
alphabets in lower and upper case, decimal digits, and other printable characters that
are available on your keyboard. Later as there was need for additional characters to be
represented such as graphics characters, additional special characters etc., ASCII was
extended to 8 bits to represent 256 characters (called Extended ASCII codes). There
are many variants of ASCII, they follow different code pages for language encoding,
however, having the same format. You can refer to the complete set of ASCII
characters on the web. The extended ASCII codes are the codes used in most of the
Microcomputers. ’

The major strength of ASCII is that it is quite elegant in the way it represents
characters. It is easy to write a code to manipulate upper/lowercase ASCII characters
and check for valid data ranges because of the way of representation of characters.

In the original ASCII the 8th bit (the most significant bit) was used for the purpose of
error checking as a check bit. We will discuss more about the check bits later in the
Unit.

EBCDIC

Extended Binary Coded Decimal Interchange Code (EBCDIC) is a character-encoding
format used by IBM mainframes. It is an 8-bit code and is NOT Compatible to ASCII.
It had been designed primarily for ease of use of punched cards. This was primarily
used on IBM mainframes and midrange systems such as the AS/400. Another strength
of EBCDIC was the availability of wider range of control characters for ASCII. The
character coding in this set is based on binary coded decimal, that is, the contiguous
characters in the alphanumeric range are represented in blocks of 10 starting from
0000 binary to 1001 binary. Other characters fill in the rest of the range. There are
four main blocks in the EBCDIC code:

E 0000 0000 to 0011 1111 | Used for control characters

\ 0100 0000 to 0111 1111 | Punctuation characters

4 1000 0000 to 1011 1111 | Lowercase characters

R 1100 0000 to 1111 1111 | Uppercase characters and numbers.

There are several different variants of EBCDIC. Most of these differ in the
punctuation coding. More details on EBCDIC codes can be obtained from further
reading and web pages on EBCDIC.

Comparison of ASCII and EBCDIC

EBCDIC is an easier to use code on punched cards because of BCD compatibility.
However, ASCII has some of the major advantages on EBCDIC. These are:

While writing a code, since EDCDIC is not contiguous on alphabets, data comparison
to continuous character blocks is not easy. For example, if you want to check whether
a character is an uppercase alphabet, you need to test it in range A to Z for ASCII as
they are contiguous, whereas, since they are not contiguous range in EDCDIC these
may have to be compared in:the ranges A to'l, J to R, and S to Z which are the
contiguous blocks in EDCDIC.

Some of the characters such as [] \{}"~] are missing in EBCDIC. In addition, missing
control characters may cause some incompatibility problems.

UNICODE

This is a newer International standard for character representation. Unicode provides
a unique code for every character, irrespective of the platform, Program and
Language. Unicode Standard has been adopted by the Industry. The key players that
have adopted Unicode include Apple, HP, IBM, Microsoft, Oracle, SAP, Sun, Sybase,
Unisys and many other companies. Unicode has been implemented in most of the

latest client server software. Unicode is required by modern standards such as XML, Data Representation

Java, JavaScript, CORBA 3.0, etc. It is supported in many operating systems, and
almost all modern web browsers, Unicode includes character set of Dev Nagari. The
emergence of the Unicode Standard, and the availability of tools supporting it, is
among the most significant recent global software technology trends.

" One of the major advantages of Unicode in the client-server or multi-tiered
applications and websites is the cost saving over the use of legacy character sets that
results in targeting website and software products across multiple platforms,
languages and countries without re-engineering. Thus, it helps in data transfer through
many different systems without any compatibility problems. In India the suitability of
Unicode to implement Indian languages is still being worked out.

Indian Standard Code for information interchange (ISCII)

The ISCII is an eight-bit code that contains the standard ASCII values till 127 from
128-228§ it contains the characters required in the ten Brahmi-based Indian scripts. It
is defined in 1S 13194:1991 BIS standard. It supports INSCRIPT keyboard which
provides a logical arrangement of vowels and consonants based on the phonetic
properties and usage frequencies of the letters of Bramhi-scripts. Thus, allowing use
of existing English keyboard for Indian language input. Any software that uses ISCII
codes can be used in any Indian Script, enhancing its commercial viability. It also
allows transliteration between different Indian scripts through change of display
made.

2.6 DATA REPRESENTATION FOR
COMPUTATION

As discussed earlier, binary codes exist for any basic representation. Binary codes can
be formulated for any set of discrete elements e.g. colours, the spectrum, the musical
notes, chessboard positions etc. In addition these binary codes are also used to
formulate instructions, which are advanced form of data representation. We will
discuss about instructions in more detail in the later blocks. But the basic question
which remains to be answered is:

How are these codes actually used to represent data for scientific calculations?

The computer is a discrete digital device and stores information in flip-flops (see Unit
3, 4 of this Block for more details), which are two state devices, in binary form. Basic
requirements of the computational data representation in binary form are:

Representation of sign

Representation of Magnitude

If the number is fractional then binary or decimal point, and
Exponent

2 & & @

The solution to sign representation is easy, because sign can be either positive or
negative, thercfore, one bit can be used to represent sign. By default it should be the
left most bit (in most of the machines it is the Most Significant Bit).

Thus, a number of n bits can be represented as n+1 bit number, where n+1th bit is the
sign bit and rest n bits represent its magnitude (Please refer to Figure 3).

1 bit K n bit
sign magnitude

Figuce 3: A (n+ 1) bit numbey

Introduction to Digital
Circuits

40

The decimal position can be represented by a position between the flip-flops (storage
cells in computer). But, how can one determine this decimal position? Well to
simplify the representation aspect two methods were suggested: (1) Fixed point
representation where the binary decimal position is assumed either at the beginning or
at the end of a number; and (2) Floating point representation where a second register
is used to keep the value of exponent that determines the position of the binary or
decimal point in the number.

But before discussing these two representations let us first discuss the term
“complement” of a number. These complements may be used to represent negative
numbers in digital computers.

Complement: There are two types of complements for a number of base (also called
radix) r. These are called r’s complement and (r- 1)’s complement. For example, for
decimal numbers the base is 10, therefore, complements will be 10’s complement and
(10-1) = 9’s complement. For binary numbers we talk about 2’s and 1°s complements. -
But how to obtain complements and what do these complements means? Let us
discuss these issues with the help of following example:

Example 2: Find the 9°s compiement and 10’s complement for the decimal number
256.

Solution:

9°s complement: The 9’s complement is obtained by subtracting each digit of the
number from 9 (the highest digit value). Let us assume that we want to represent a
maximum of four decimal digit number range. 9’s complement can be used for BCD
numbers.

9 9 9 9
9’s complement of 256 0 2 |5 |-6
9 7 4 3

Similarly, for obtaining 1’s complement for a binary number we have to subtract each
binary digit of the number from the digit 1. ‘

10’s complement: Adding 1 in the 9’s complement produces the 10’s complement.
10’s complement of 0256 = 9743+1 = 9744

Please note on adding the number and its 9°s complement we get 9999 (the maximum
possible number that can be represented in the four decimal digit number range) while
on adding the number and its 10’s complement we get 10000 (The number just higher
than the range. This number cannot be represented in four digit representation.)

Example3: Find 1’s and 2’s complement of 1010 using only four-digit representation.

Solution:

1’s complement: The 1’s complement of 1010 is

[
The number is 1 0 1 T 0

| The 1’s complement is 0 1 0 1

Please note that wherever you have a digit 1 in number the complement contains 0 for Data Representation
that digit and vice versa. In other words to obtain 1’s complement of a binary number,

we only have to change all the 1’s of the number to 0 and all the zeros to 1°s. This can

be done by complementing each bit of the binary number.

2’s complement: Adding 1 in 1’s complement will generate the 2°s complement

The number is 1 0 1 0 T
The 1’s complement is 0 i 0 1
For 2°s complement add 1 in 1°s complement | - . - 1
Please note that 1+1 =1 0 in binary 0 | | 0
i) in
Most Significant bit Least significant bit
The number is 1 0 1 0
2‘16 1’s complementis | 0 1 | 0

The 2’s complement can also be obtained by not complementing the least significant
zeros till the first 1 is encountered. This 1 is also not complemented. After this 1 the
rest of all the bits are complemented on the left.

Therefore, 2°s complement of the following number (using this method) should be
(you can check it by finding 2’s complement as we have done in the example).

l s T]

! I

The number is 0o Jo jt o lo 1 {0 o
N S NN W

4) ; ' ; !
Tl.e2 s complement | 1 0 A IR IPSR [P

s ~ T D

N B
No change in these bits
| . i ‘ Co

[The number is } ! 0 0 l 0 G 0 10 0

The 2°s complement

1 jo do o o ‘o 1o lo

T

!
]

1

|

'

i

| SRS SN

is |
L ! _ o 1
No change in number and its 2°’s Complement, a special case
|
I The number is 0 0 1 0 1 0 0 1
l The 2°s complement is | 1 I 0 1 0] J 1 1

No change in this
bit only

2.6.1 Fixed Point Representation

The fixed-point numbers in binary uses a sign bit. A positive number has a sign bit 0,
while the negative number has a sign bit 1. In the fixed-point numbers we assume that
the position of the binary point is at the end, that is, after the least significant bit. It
implies that all the represented numbers will be integers. A negative number can be
represented in one of the following ways:

e Signed magnitude representation
41

Introduction 10 Digital
Circuits

42

. Signed 1's complement representation, or
* Signed 2°s complement representation.
(Assumption: size of register = 8 bits including the sign bit)

Signed Magnitude Representation

Decimal Representation (8 bits)
Number Sign Bit Magnitude (7 bits)
I 0 000 0110
-6 1 000 0110

No change in the Magnitude, only sign bit changes

Signed 1’s Complement Representation

Representation (8 bits)

L

Decimal
Number | Sign Bit Magnitude/ 1’s complement
for negative number (7 bits)
+6 0 000 0110
-6 ! 111 1001

For negative number take 1°s complement of all the bits (including sign
bit) of the positive number

Signed 2°s Complement Representation

Representation (8 bits)

Decimal
Number | Sign Bit Magnitude/ 1’s complement
for negative number (7 bits)
+6 0 000 0110
-6 1 111 1010

For negative number take 2’s complement of all the bits (including sign
bit) of the positive number

Arithmetic addition

The complexity of arithmetic addition is dependent on the representation, which has

been followed. Let us discuss this with the help of foflowing example.

Example 4: Add 25 and -30 in binary using 8 bit registers, using:

. Signed magnitude representation

e Signed I’s complement
. Signed 2’s complement

Solution:
Number, Signe.d Ma.gnitude Represe'ntation
Sign Bit Magnitude
+25 0 001 1001
-25° 1 001 1001
+30 0 001 1110
-30 1 001 1110

To do the arithmetic addition with one negative number only, we have to check the
magnitude of the numbers. The number having smaller magnitude is then subtracted
from the bigger number and the sign of bigger number is selected. The
implementation of such a scheme in digital hardware will require a long sequence of
control decisions as well as circuits that will add, compare and subtract numbers. Is

there a better alternative than this scheme? Let us first try the signed 2’s complement.

B Signed Magnitude Representation
Number T
Sign Bit Magnitude
T 0 001 1001 |
-25 1 110 0111
+30 0 001 1110
-30 1 110 0010

Now let us perform addition using signed 2’s complement notation:

Operation Decimal Signed 2’s complement representation | Comments
equivalent
number
Carry [Sign out Magritude
out J
Addition of 25 B 0 001 1001 [Simple binary addition.
twa positive There is no carry out of
number +30 ' 0 001 110 sign bit
+55 o | o | on om
Addition of
smallle(r) +25 - 0 Rk 1001 | Perform simple binary
Positive and .30 . 1 110 0010 addxt;on. No carry in to
larger the sign bit and no carry
negative out of the sign bit
Number -05 0 ! 111 1011
Positive 2’s complement of above
value of +05 0 1 000 0101 | result
result
Addition of -25 - i 110 0111 | Perform simple binary
larger © 430 B 1 001 1110 | addition. No carry into
Positive and the sign bit and carry out
smaller +05 t 0 000 0101 ot the sign bit
negative '
Number
Discard the carry out bit
Addition of Perform simple binary
. -25 - 1 110 0111 o X .
two negative addition. There is carry in
Numbers -30 - 1 110 0010 | (o the sign bit and carry
out of the sign bit No
-55 1 1 110 1001 overflow
Discard the carry out bit
Positive 2’s complemnt of above
value of +55 - 0 011 0111 |} result
result

Please note how easy it is to add two numbers using signed 2’s Complement. This
procedure requires only one controt decision and only one circuit for adding the two
numbers. But it puts on additional condition that the negative numbers should be
stored in signed 2°s complement notation in the registers. This can be achieved by

Data Representation

43

Introduction to Digital
Circuits

44

complementing the positive number bit by bit and then incrementing the resultant by 1
to get signed 2's complement.

Signed 1’s complement representation

Another possibility, which also is simple, is use of signed 1’s complement. Signed 1°s
complement has a rule. Add the two numbers, including the sign bit. If carry of the
most significant bit or sign bit is one, then increment the result by 1 and discard the
carry over. Let us repeat all the operations with 1’s complement.

Operation Decimal Signed 1’s complement representation | Comments
equivalent
number
Carry . .
out J Sign out Magnitude
Addi‘tior} of 125 R 0 001 1001 Simple binary addition.
two positive There is no carry out of
+30 - 0 001 1110
number sign bit
+55 0 J 0 J 001 0111
Addition of] .
smaller +25 - 0 001 1001 Perfo.rm simple bm_ary
Positive and 230 . 1 110 0001 addlt.lon. No carry in to
larger the sign bit and no carry
. out of the sign bit
negative -05 0 1 111 1011
Number .
Positive 1’s complement of above
value of - 105 - 0 000 0101 | result
result "
Addition of -25 - 1 110 0111 | There is carry in to the
larger +30 . 0 001 1110 | sign bit and carry out of
Positive and the sign bit. The carry out
smaller 1 0 000 0101 | is added it to the Sum bit
negative and then discard no
Number Add carry f overflow.
to Sum —p
and
discard it
+05 - 0 000 0101
Addition Qf 225) 1 i10 0111 PerfoArm sirpple t?inary .
two negative addition. There is carry in
Numbers =30 - ! 110 0010 | o the sign bit and carry
out of the sign bit No
-55 1 1 100 0111 | overflow
Add carry t k
to sum and » i
discard it
- 1 100 1000
Positive 1’s complemnt of above
value of +55 - 0 011 0111 | result
result

Another interesting feature about these representations is the representation of 0. In
signed magnitude and 1’s complement there are two representations for zero as:

Representation +0 -0
Signed magnitude 0 0000000 1 000 0000
Signed 1’s complement 0 0000000 1 111 1111

But, in signed 2’s complement there is just one zero and there is no positive or Data Representation

negative zero.
+0 in 2’s Complement Notation:0 000 0000

-0 in I’s complement notation: 1 111 1111
Add 1 for 2’s complement: 1
Discard the Carry Out 1 0 000 0000

Thus, -0 in 2°s complement notation is same as +0 and is equal to 0 000 0000. Thus,
both +0 and -0 are same in 2’s complement notation. This is an added advantage in
favour of 2’s complement notation.

The highest number that can be accommodated in a register, also depends on the type
of representation. In general in an 8 bit re}gister 1 bit is used as sign, therefore, the rest
7 bits can be used for representing the value. The highest and the lowest numbers that
can be represented are:

For signed magnitude representation Q'-Dto-2"-1)
=(128-1)to —(128-1)
=127t0 -127

For signed 1’s complement 127 to -127

But, for signed 2’s complement we can represenf +127 to —128. The — 128 is
represented in signed 2°s complement notation as 10000000.

Arithmetic Subtraction: The subtraction can be easily done using the 2’s
complement by taking the 2’s complement of the value that is to be subtracted
(inclusive of sign bit) and then adding the two numbers.

Signed 2’s complement provides a very simple way for adding and subtracting two
numbers. Thus, many computers (including IBM PC) adopt signed 2’s complement
notation. The reason why signed 2’s complement is preferred over signed 1’s
complement is because it has only one representation for zero.

Overflow: An overflow is said to have occurred when the sum of two n digits number
occupies n+ 1 djgits. This definition is valid for both binary as well as decimal digits.

What is the significance of overflow for binary numbers?

Well, the overflow results in errors during binary arithmetic as the numbers are
represented using a fixed number of digits also called the size of the number. Any
value that results from computation must be less than the maximum of the allowed
value as per the size of the number. In case, a result of computation exceeds she
maximum size, the computer will not be able to represent the number correctly, or in
other words the number has overflowed. Every computer employs a limit for
representing numbers e.g. in our examples we are using 8 bit registers for ¢alculating
the sum. But what will happen if the sum of the two numbers can be accommodated in
9 bits? Where are we going to store the 9th bit, The problem will be better understood
by the following example.

Example: Add the numbers 65 and 75 in 8 bit register in signed 2’s complement

notation.
65 0 1000001
75 0 1001011

140‘ 1 0001100

The expected result is +140 but the binary sum is a negative number and is equal to

—116, which obviously is a wrong result. This has occurred because of overflow. 45

Introduction to Digital How does the computer know that overflow has occurred?
Circuits

If the carry into the sign bit is not equal to the carry out of the sign bit then
overflow must have occurred.

Another simple test of overflow is: if the sign of both the operands is same during
addition, then overflow must have occurred if the sign of resultant is different than
that of sign of any operand.

For example

FDecimal Carry.| Sign | 2’s 7 Decimal | Carry Sign | 2’s
out bit Complement out bit Complement
Mantissa Mantissa
-65 1 011 1111 -65] o1l 1111
-15 1 111 0001 -75 1 111 0001
T
-80 1 I o11 oooo | 140 ! 0 111 0100
| .
Carry into Sign bit = 1 Carry into Sign bit = 0
Carry out of sign bit = 1 Carry out of Sign bit= 1
Therefore, NO OVERFLOW Therefore, OVERFLOW

Thus, overflow has occurred, i.e. the arithmetic results so calculated have exceeded
the capacity of the representation. This overflow also implies that the calculated
results will be erroneous.

2.6.2 Decimal Fixed Point Representation

The purpose of this representation is to keep the number in decimal equivalent form
and not binary as above. A decimal digit is represented as a combination of four bits;
thus, a four digit decimal number will require 16 bits for decimal digits representation .
and additional 1 bit for sign. Normally to keep the convention of one decimal digit to
4 bits, the sign sometimes is also assigned a 4-bit code. This code can be the bit
combination which has not been used to represent decimal digit e.g. 1100 may
represent plus and 1101 can represent minus.

For example, a simple decimal number — 2156 can be represented as:

1101 0010 0001 0101 0110
I

Sign

Although this scheme wastes considerable amount of storage space yet it does not
require conversion of a decimal number to binary. Thus, it can be used at places where
the amount of computer arithmetic is less than that of the amount of input/output of
data e.g. calculators or business data processing situations. The arithmetic in decimal
can also be performed as in binary except that instead of signed complement, signed
nine’s complement is used and instead of signed 2’s complement signed 9’s
complement is used. More details on decimal arithmetic are available in further
readings. '

Check Your Progress 2

1) Write the BCD equivaien: fov the three numbers given beisw:
iy 23
ii) 49.25
iii) 892

KN
N

2) Find the 1’s and 2°s complement of the following fixed-point numbers.

i) 10100010
ii) 00000000
iii) 11001100

3) Add the following numbers in 8-bit register using signed 2’s complement
notation

i) +50and-5

ii) +45and —65

iii) +75 and +85

Also indicate the overflow if any.

..

2.6.3 Floating Point Representation

Floating-point number representation consists of two parts. The first part of the

number is a signed fixed-point number, which is termed as mantissa, and the second
part specifies the decimal or binary point position and is termed as an Exponent. The
mantissa can be an integer or a fraction. Please note that the position of decimal or

binary point is assumed and it is not a physical point, therefore, wherever we are
representing a point it is only the assumed position.

Example 1: A decimal + 12.34 in a typical floating point notation can be represented

in any of the following two forms:

Sign Sign
4 ¢

0 1234‘ ‘o oﬂ

Mantissa (fraction) Exponcnf

Sign Sign

¥ ¥

N

Mantissa (Integer) Exponent

Data Representation

Introduction to Digital
Circuits

48

This number in any of the above forms (if represented in BCD) requires 17 bits for
mantissa (1 for sign and 4 each decimal digit as BCD) and 9 bits for exponent (1 for
sign and 4 for each decimal digit as BCD). Please note that the exponent indicates the
correct decimal location. In the first case where exponent is +2, indicates that actual
position of the decimal point is two places to the right of the assumed position, while
exponent- 2 indicates that the assumed position of the point is two places towards the
left of assumed position. The assumption of the position of point is normally the same
in a computer resulting in a consistent computational environment.

Floating-point numbers are often represented in normalised forms. A floating point
number whose mantissa does not contain zero as the most significant digit of the
number is considered to be in normalised form. For example, a BCD mantissa + 370
which is 0 0011 0111 0020 is in normalised form because these leading zero’s are not
part of a zero digit. On the other hand a binary number 0 01100 is not in a normalised
form. The normalised form of this number is:

0 1100 0100
Sign | Normalised Mantissa | Exponent (assuming fractional Mantissa

A floating binary number +1010.001 in a 16-bit register can be represented in
normalised form (assuming 10 bits for mantissa and 6 bits for exponent).

Sign bit

o | 101000100 1 0 00100 |

Mantissa (Integer) Exponent

A zero cannot be normalised as all the digits in mantissa in this case have to be zero.

Arithmetic operations involved with floating point numbers are more complex in
nature, take longer time for execution and require complex hardware. Yet the floating-
point representation is a must as it is useful in scientific calculations. Real numbers
are normally represented as floating point numbers.

The following figure shows a format of a 32-bit floating-point number.

0 1 8 9 31

| Sign | Biased Exponent = 8 bits | Significand = 23 bits

Figure 4: Floating Point Number Representation

The charactzristics of a typical floating-point representation of 32 bits in the above
figure are:

. Left-most bit is the sign bit of the number;

. Mantissa or signific and should be in,normalised form;

. The base of the number is 2, and

. A value of 128 is added to the exponent. (Why?) This is called a bias.

A normal exponent of 8 bits normally can represent exponent values as 0 to 255.
However, as we are adding 128 for getting the biased exponent from the actual
exponent, the actual exponent values represented in the range will be — 128 to 127.

Now, let us define the range that a normalised mantissa can represent. Let us assume
that our nresent representations has thic normalised mantissa, thus, the left most bit

cannot be zero, therefore, it has to be 1. Thus, it is not necessary to store this first bit
and it is being assumed implicitly for the number. Therefore, a 23-bit mantissa can
represent 23 + 1 = 24 bit mantissa in our representation.

Thus, the smallest mantissa value may be:

The implicit first bit as 1 followed by 23 zero’s, that is,
0.1000 0000 0000 0000 0000 0000
Decimal equivalent =1 x 2" =0.5

The Maximum value of the mantissa:
The implicit first bit 1 followed by 23 one’s, that is,

O.1111 1111 1111 1111 1111 1111

Decimal equivalent:
For finding binary equivalent let us add 2" to above mantissa as follows:

Binary: 0:1111 1111 1111 1111 1111 1111
+0.0000 0000 0000 0000 0000 0001 =2
1.0000 0000 0000 0000 0000 0000 = 1
=(1-2%) '

Therefore, in normalised mantissa and biased exponent form, the floating-point
number format as per the above figure, can represent binary floating-point numbers in
the range:
Smallest Negative number
Maximum mantissa and maximum exponent
— _ (l _2-24) x 2127
Largest negative number
Minimum mantissa and Minimum exponent
=-0.5x 2"
Smallest positive number
=0.5x 2"
Largest positive number
— (1 _2-24) x 2127

: ;
T
ol
8 5
25
Z 5
22
B =
D2
__>| z c-.'.(__
N - Positive
egamet(__ Representable "' |<_ Representable Overflow
overﬂowv Negative : : Positive numbers
i number :
! Range J | |]
. (1_2-24) % 27 0.5 % 2,12,1 T H0.5 x 21 (1-27%%) = 2127
Zero

Figure 3: Binary floating-point number range for given 32 bit format

1ata Representatign

Introduction to Digital
Circuits

50

In floating point numbers, the basic trade-off is between the range of the numbers and
accuracy, also called the precision of numbers. If we increase the exponent bits in 32-
bit format, the range can be increased, however, the accuracy of numbers will go
down, as size of mantissa will become smaller. Let us take an example, which will
clarify the term precision. Suppose we have one bit binary mantissa then we can
represent only 0.10 and 0.11 in the normalised form as given in above example
{having an implicit 1). The values such as 0.101, 0.1011 and so on cannot be
represented as complete numbers. Either they have to be approximated or truncated
and will be represented as either 0.10 or 0.11. Thus, it will create a truncation or round
off error. The higher the number of bits in mantissa better will be the precision.

In floating point numbers, for increasing both precision and range more number of
bits are needed. This can be achieved by using double precision numbers. A double
precision format is normally of 64 bits.

Institute of Electrical and Electronics Engineers (LEEE) is a society, which has created
lot of standards regarding various aspects of computer, has created IEEE standard 754
for floating-point representation and arithmetic. The basic objective of developing this
standard was to facilitate the portability of programs from one to another computer.
This standard has resulted in development of standard numerical capabilities in
various microprocessors. This representation is shown in figure 6.

0 1 8§ 9 31

S Biased exponent (E) | Significand (N)

Single Precision = 32 bits

0 1 11 12 63

S Biased exponent (E) Significand (N)

Double Precision = 64 bits
Figure 6: IEEE Standard 754 format

Figure 7 gi\)es the floating-point numbers specified by the IEEE Standard 754.

Single Precision Numbers (32 bits}

Exponent (E) | Significand (N) Value / Comments

255 Not equal to 0 Do represent a number
255 0 - or +o depending on sign bit
0<E<255 Any +(1.N) 2577
For example, if S is zero that is positive
number.

N=101 (rest 20 zeros) and E=207
Then the number is = +(1.101) 22717

=+ 1.101x 2%
0 Notequalto 0 - | + (O.N) 2" -
0 lo o + 0 depending on the sign bit.

Double precision Numbers (64 bits)

Exponent (E) 7-Szfgniﬁcand (N) Value / Comments
2047 Not equal to 0 Do not represent a number

2047 0 - or += depending on the sign bit
0<E<2047 Any + (1.N)281%
0 Not equal to 0 T (0.N) 270

0 0 | 0depending on the sign bit

¥igure 7: Values of {loating point numbers as per 1EEFE standard 754

Please note that [EEE standard 754 specifies plus zero and minus zero and plus
infinity and minus infinity. Floating point arithmetic is more sticky than fixed point’
arithmetic. For floating point addition and subtraction we have to follow the following
steps:

) Check whether a typical operand is zero

» Align the significand such that both the significands have same exponent
. Add or subtract the significand only and finally

. The significand is normalised again

These operations can be represented as
. ‘ Ex-Ey Ey
x+y—(NXx2 +Ny)x2
and x -y = (N, x25°% = N_)x 2"

Here, the assumption is that exponent of x (Ex) is greater than exponent of y (Ey), Nx
and Ny represent significand of x and y respectively.

While for multiplication and division operations the significand need to be multiplied
or divided respectively, however, the exponents are to be added or to be subtracted
respectively. In case we are using bias of 128 or any other bias for exponents then on
addition of exponents since both the exponents have bias, the bias gets doubled.
Therefore, we must subtract the bias from the exponent on addition of exponents.
However, bias is to be added if we are subtracting the exponents. The division and
multiplication operation can be represented as:

X%y = (N x N, < 2878

XTy=(N, =Ny 279
For more details on floating point arithmetic you can refer to the further readings.
2.6.4 Error Detection and Correction Codes

Before we wind up the data representation in the context of today’s computers one
must discuss about the code, which helps in recognition and correction of errors.
Computer is an electronic media; therefore, there is a possibility of errors during data
transmission. Such errors may result from disturbances in transmission media or
external environment. But what is an error in binary bit? An error bit changes from
0to 1 or1to0.Oneofthe simplest error detection codes is called parity bit.

Parity bit: A parity bit is an error detection bit added to binary data such that it makes
the total number of 1’s in the data either odd or even. For example, in a seven bit data
0110101 an 8&th bit, which is a parity bit may be added. If the added parity bit is even
parity bit then the value of this parity bit should be zero, as aiready four 1°s exists in
the 7-bit number. 1f we are adding an odd parity bit then it will be 1, since we already
have four 1 bits in the number and on adding 8th bit (which is a parity bit) as 1 we are
making total number of 1°s in the number (which now includes parity bitalso) as 5, an
odd number.
Simitarly in data 0010101 Parity bit for even parity is 1

Parity bit for odd parity is 0

But how does the parity bit detect an error? We will discuss this issue in general as an
error detection and correction system (Refer figure 8).

Data Representation

Introduction to Digital
Circuity

But how does the parity bit detect an error? We will discuss this issue in general as an
error detection and correction system (Refer figure 8).

The error detection mechanism can be defined as follows:

Data at Searce

e lransmitted
“mpuler or
External Envicomment (N
bus)

Source 1 Destination
¥
I
{
!
]
1

(i C\‘(IL)

A
\J__._

Reapply crror detection or
correction code gencration
function on daareceived

ion ar

aneode

funiction
frror duu.lmn or]
correction code tion eude (i bits)]
Compare the two codes

Flag an error or correat Ne error
itas the code is Aceept Data

Figure 8: Error detection and correction

The Objective : Data should be transmitted between a source data pair reliably,
indicating error, or even correcting it, if possible.
The Process:

. An error detection function is applied on the data available at the source end an
error detection code is generated.

. The data and error detection or correction code are stored together at source.

. On receiving the data transmission request, the stored data along with stored
error detection ar correction code are transmitted to the unit requesting. data
{Destination).

® On receiving the data and error detection/correction code from source, the
destination once again applies same error detection/correction function as has
been applied at source on the data received (but not on error detection/
correction code received from source) and generates destination error
detection/correction code.

o Source and destination error codes are compared to flag or correct an error as
the case may be.

The parity bit is only an error detection code. The concept of error detection and
correction code has been developed using more than one parity bits. One such code is
Hamming error correcting code.

Hamming Error-Correcting Code: Richard Hamming at Bell Laboratories devised
this code. We will just introduce this code with the help of an example for 4 bit data.

Let us assume a four bit number b4, b3, b2, bl. In order to build a simple error
detection code that detects error in one bit only, we may just add an odd parity bit.
However, if we want to find which bit is in error then we may have to use parity bits

for various combinations of these 4 bits such that a bit error can be identified Representatipn
uniquely. For example, we may create four parity sets as

Source Parity Destination Parity
b, b2, b3 Pl DI
b2, b3, b4 P2 D2
b3, b4, bl P3 | D3
bl, b2, b3, b4 P4 D4

Now, a very interesting phenomena can be noticed in the above parity pairs. Suppose'
data bit bl is in error on transmission then, it will cause change in destination parity

D1, D3, D4,

ERRORIN Cause change in Destination Parity
(one bit only)

bl D1, D3, D4

b2 D1, D2, D4

b3 D1,D2,D3,D4

b4 D2, D3, D4

Figure 9 : The error detection parity code mismatch

Thus, by simply comparing parity bits of source and destination we can identify that
which of the four bits is in error. This bit then can be complemented to remove error.
Please note that, even the source parity bit can be in error on transmission, however,
under the assumption that only one bit (irrespective of data or parity) is in error, it will
be detected as only one destination parity will differ.

What should be the length of the error detection code that detects error in one bit?

Before answering this question we have to look into the comparison logic of error

detection. The error detection is done by comparing the two ‘i* bit error detection and

correction codes fed to the comparison logic bit by bit (refer to figure 8). Let us have

comparison loglc which produces a zero if the compared bits are same or else it
_produces a one.

Therefore, if similar Position bits are same then we get zero at that bit Position, but if
they are different, that is, this bit position may point to some error, then this Particular
bit position will be marked as one. This way a matching word is constructed. This
matching word is ‘i’ bit long, therefore, can represent 2" values or combinations.

For example, aA-bit' matching word can represent 2*=16 values, which range from 0

to 15 as:
0000, 0001, 0010, 0011, 0100, 0101, 0110, ol1t
1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111

The value 0000 or 0 represent no error while the other values i.e. 2*-1

_ (for 4 bits 2*~ 1=15, that is from 1 to 15) represent an error condition. Each of these
2 —1(or 15 for 4 bits) values can be used to represent an error of a. partncular bit.
Since, the error can occur during the transmission of ‘N’ bit data plus ‘i’ bit error
correction code, therefore, we need to have at least ‘N+i’ error values to represent
them. Therefore, the number of error correction bits should be found from the
following equation:

28 -1 >= N+

Introduction to Digita
Circuits :

If we are assuming 8-bit word then we need to have
2 1 >= 8+
Sayat i=3 LHS=2° —1=7;RHS=8+3 =11
i=4 2i.1=2' —1=15;RHS =8+4 =12

Therefore, for an eight-bit word we need to have at least four-bit error correction code
for detecting and correcting errors in a single bit during transmission.

Similarly for 16 bit word we need to have i =5

2° -1 =31 and 16+ = 16+5 =21

For 16-bit word we need to have five error correcting bits.
Let us explain this with the help of an example: -

Let us assume 4 bit data as 1010

The logic is shown in the following table:

Source:
Source Data , Odd parity bits at source
b4 b3 b2 bl P1 P2 P3 P4

(1,b2,b3) | (b2,63,b4) | (b3,b4,b1) | (bl,b2, b3,bd)

1 0 1 E 0 1 0 1

This whole information, that is (data and P1 to P4), is transmitted.
Assuming one bit error in data.

Case 1: Data received as 1011 (Erfor inbl)

b4 b3 b2 bl DI D2 D3 D4
‘ (b1,b2,b3) | (b2,b3,b4) | (b3,b4,b1) | (bl, b2, b3,b4)

1[100 i 0 i
o L

Thus, P1 - DI, P3 - D3, P4 D4 pair differ, thus, as per Figure 9, bl is in error, so
correct it by completing b1 to get correct data 1010.

Case 2: Data Received as 1000 (Error in b2)

b4 b3 b2 bl D1 D2 D3 D4
(b1,b2,b3) | (b2,b3,b4) | (b3,ba,bl) | (bl, b2, b3,b4)

1 0 B 0 0 1 { 0 0

‘Thus, P1 —DI1, P2-D2, P4 - D4 pair differ, thus, as per figure 9,bit b2 is in

error. So correct it by complementing it to get correct data 1010.
Case 3:

Now let us take a case when data received is correct but on receipt one of the parity
bit, let us say P4 become 0. Please note in this case since data is 1010 the destination
parity bits will be D1=0, D2=1, D3=0, D4=1. Thus, P1- D1, P2 — D2, P3 — D3, will
be same but P4 ~D4 differs. This does not belong to any. of the combinatior:s in
“mare 8. Thus we conclude that P4 received is wreng, -

Please not that all these above cases will fail in case error is in more than one Data Representation

bits. Let us see by extending the above example.

Normally, Single Error Correction (SEC) code is used in semiconductor memories for
correction of single bit errors, however, it is supplemented with an added feature for
detection of errors in two bits, This is called a SEC-DED (Single Error Correction-
Double Error Detecting) code. This code requires an additional check bit in
comparison to SEC code. We will only illustrate the working principle of SEC-DED
code with the help of an example for a 4-bit data word. Basically, the SEC-DED code
guards against the errors of two bits in SEC codes.

Case: 4

Let us assume now that two bit errors occur in data.
Data received:

b4 - b3 b2 bl

1 1 0 0
b4 |b3 |b2 |bl |DI D2 D3 D4

(b1, b2, b3) | (b2, b3, b4) | (b3, b4, bl) | (b1, b2, b3,b4)
1 0 0 0 0 1 0 0

- Thus, on -matching we find P3-D3 pair does not match,

- However, this information is wrong. Such problems can be identified by adding one
more bit to this Single Error Detection Code. This is called Double Error Detection
bit (P5, D5).

So our data now is

b4 b3 b2 bl PI P2 P3 P4 Pp5(Overall parity of whole data)
1 ¢ 1 0 0 1 o0 1 1

Data receiving end.

b4 b3 b2 bl DI D2 D3 D4 Ds
11 0 0 O 1 1 1 0

D5-PS mismatch indicates that there is double bit error, so do not try to correct error,
instead asks the sender to send the data again. Thus, the name single error correction,
but double error detection, as this code corrects single bit errors but only detects error
in two bit.

Check Your Progress 3

1) Represent the following numbers in IEEE-754 floating point single precision
number format:

i) 1010. 0001
ii) —0.0000111

2) Find the even and odd parity bits for the following 7-bit data:

i) 0101010
i) 0000000
i) 1111111
iv) 1000100

35

Introduction to Digital
Circuits

56

3) Find the length of SEC code and SEC-DED code for a 16-bit word data transfer.

...

27 SUMMARY

This unit provides an in-depth coverage of the data representation in a computer
system. We have also covered aspects relating to error detection mechanism. The
unit covers number system, conversion of number system, conversion of numbers to a
different number system. It introduces the concept of computer arithmetic using 2’s
complement notation and provides introduction to information representation codes
like ASCII, EBCDIC, etc. The concept of floating point numbers has also been
covered with the help of a design example and JEEE-754 standard. Finally error
detection and correction mechanism is detailed along with an example of SEC &
SEC-DED code.

The information given on various topics such as data representation, error detection
codes etc. although exhaustive yet can be supplemented with additional reading. In
fact, a course in an area of computer must be supplemented by further reading to keep
your knowledge up to date, as the computer world is changing with by leaps and
bounds. In addition to further reading the student is advised to study several Indian
Journals on computers to enhance his knowledge.

2.8 SOLUTIONS/ANSWERS

Check Your Progress 1
1.

@ 20 22 2! 20 2t % 2% gt

.__.
—
(=]
o
—_
—_
o
—

thus; Integer = (1x22+1 x240x 2140 % 2%) = (2°+2%) = (8+4) = 12
Fraction =(1x2'+1x224+0x2°+1x2%) = 2742242 = 0.5+0.125 + 0.0625 =0.6875

i)y 10101010

A °

1o 1 0 0o 1

128664 32. 16 8 4 2 1
-t 0 1 0o 1 o0 1 0

The decimal equivalent is

=1x 128+0%x64+1x32+0x16+1x8+0x4+1x2+0x1
=128+32+8+2=170
2.

Hh 16 8 4 2 1
1 0 1 11

Data Representation

ii) Integeris 49.
32 16 8 4 2 1
1 1 0 0 0 I
Fraction is 0.25
1/2 1/4 1/8 /16
0 1 0 0
The decimal number 49.25 is 110001.010

iii)
512 256 128 64 32 16 8 4 2 1
1 1 0 1 1 1 1 1 0 0
The decimal number 892 in binary is 1101111100
3)
i) Decimal to Hexadecimal
16) 23 (1
=16
7

Hexadecimal is 17
Binary to Hexadecimal (hex)

=1 0111 (from answer of 2 (i)

0001 0111
1 7

49.25 or110001.010
Decimal to hex
Integer part = 49

1649 (3
48

1

Integer part = 31
Fraction part = 25 %16

= 4.000 So fraction part=4
Hex number is 31.4

Binary to hex 11 0001 . 010
= 0011 0001 . 0100
= 3 1 .4
= 314

iii) 892 or 1101111100

0011 0111 1100
=3 7 C
=37C

57

Introduction to Digital
Circuits

58

rNumber Quotient on Remainder
division by 16
892 55 12=C
55 7
3 0 3

So the hex number is : 37C

Check Your Progress 2

1.

i) 23 in BCDis 0010 0011

i) 49.25inBCDis0100 1001.0010 0101

iii) 892 in BCD is 1000 1001 0010

2. 1’s complement is obtained by complementing each bit while 2"s complement is
obtained by leaving the number unchanged till first 1starting from least

significant bit after that complement each bit.

(D ‘ (ii)
Number 10100010 00000000
1’s complement 01011101 11111111
2’s complement 01011110 00000000
3. We are using signed 2°s complement’ notation
(i) +50 is 0 0110010

+5 is 0 0000101
therefore -5 is 1 1111011

Add+50 = 0 0110010
-5 1 1111011

1 0 olo1101

?

carry out (discard the carry)
Carry in to sign bit =]
Carry out of sign bit =1 Therefore, no overflow

The solution is 0010 1101= +45

i1) +45 is 0 0101101
+65 is 0 1000001

Therefore, -65 is 1 0111111
+45 0 0101101

- 65 | 0111111

1 1101100

(iii)
11001100

00110011
00110100

No carry into sign bit, no carry out of sign bit. Therefore, no overflow.

+20 is ¢ 0010100
Therefore, -20is 1 1101100

which is the given sum

(iii) +75 s 0 1001011

+85 s 0 1010101
1 0100000

Carry into sign bit =1

Carry out of sign bit =0

Overflow.

Check Your Progress 3

1.

i) 1010.0001

= 1.0100001 x2°

So, the single precision number is :

Significand = 010 0001 000 0000 0000 0000
Exponent =3+127=

i) -0.0000111
11127

Slgmf’cand— 110 0000 0000 0000 0000 0000

130 =

10000010
Sign=0
So the numberis =0 1000 0010 010 0001 0000 0000 0000 0000

Exponent = 127-5 =122=0111 1010
= 1

Sign = - =
So the number is

1 0111 1010 110 0000 0000 0000 0000 0000

2. Data
0101010
0000000
111111
1000100

3. The equation for SEC code is

211 > =N+i

i -— Number of bits in SEC code
N — Number of bits in data word

In, this case N=16
i=7

so the equation is

2 -1>=16+i »
at i =4
24-1 > =16+4
=20 Not true.
at i =5
« 2°-1>=16+5

31> =21 True the condition is satisfied,

Although, this condition will be true for i > 5 also but we want to use only minimum
essential correction bits which are 5.

For SEC-DED code we require an addnt.onal bit as overall parity. Therefore, the SEC-

DED code will be of 6 bits.

Even parity bit

0Odd parity bit

0

1
0
1

Data Representation

59

