UNIT4 ASSEMBLY LANGUAGE
PROGRAMMING (PART-II)

Structure Page No.

4.0 Introduction 77
4.1 Objectives 77
4.2 Use of Arrays in Assembly 77
43 Modular Programming 80

43.1 The stack
432 FAR and NEAR Procedures
4.33 Parameter Passing in Procedures
434 External Procedures
44 Interfacing Assembly Language Routines to High Level Language
Programs 93
441 Simple Interfacing
44.2 Interfacing Subroutines With Parameter Passing

4.5 Interrupts 97
4.6 Device Drivers in Assembly 99
47 Summary 101
4.8 Solutions/ Answers 102

4.0 INTRODUCTION

In the previous units, we have discussed the instruction set, addressing modes, and
other tools, which are needed to develop assembly language programs. We shall now
use this knowledge in developing more advanced tools. We have divided this unit
broadly into four sections. In the first section, we discuss the design of some simple
data structures using the basic data types. Once the programs become lengthier, it is
advisable to divide them into small modules, which can be easily written, tested and
debugged. This leads to the concept of modular programming, and that is the topic of
our second section in this unit. In the third section, we will discuss some techniques to
interface assembly language programs to high level languages. We have explained the
concepts using C and C ++ as they are two of the most popular high-level languages.
In the fourth section we have designed some tools necessary for interfacing the
microprocessor with external hardware modules.

4.1 OBJECTIVES

After going through this unit, you should be able to:

¢ implement simple data structures in assembly language;
¢ write modular programs in assembly language;
e interface assembly program to high level language program; and
¢ analyse simple interrupt routines.
4.2 USE OF ARRAYS IN ASSEMBLY .

An array is referencing using a base array value and an index. To facilitate addressing
in arrays, 8086 has provided two index registers for mathematical computations, viz.
BX and BP. In addition two index registers are also provided for string processing,
viz. SI and DI. In addition to this you can use any general purpose register also for
indexing.

Assembly Language

Programming An important application of array is the tables that are used to store related

information. For example, the names of all the students in the class, their CGPA, the

- list of all the books in the library, or even the list of people residing in a particular area
can be stored in different tables. An important application of tables would be character
translation. It can be used for data encryption, or translation from one data type to
another. A critical factor for such kind of applications is the speed, which just happens
to be a strength of assembly language. The instruction that is used for such kind of
applications is XLAT.

Let us explain this instruction with the help of an example:
Example 1:

Let us assume a table of hexadecimal characters representmg all 16 hexadecimal
digits in table:

HEXA DB ‘0123456789 ABCDEF

The table contains the.AS‘CII code of each hexadecimal digit:

Offset 00]01]02]/03|04 05|06]|07 08|09 0A OB kOC 0D | OE

Contents | 30 {31 {32 (33({34{35(36(37({38(39]41 {42 43 |44 |45

(all value in hexadecimal)

If we place 0Ah in AL with the thought of converting it to ASCII, we need to set BX
to the offset of HEXA, and invoke XLAT. You need not specify the table name with
XLAT because it is implicitly passed by setting BX to the HEXA table offset. This
instruction will do the followmg operations:

It will first add BX to AL, generating an effective address that pomts to the eleventh -
entry in the HEXA table. : , ‘

The content of this entry is now moved to the AL register, that is, 41h is moved to AL.
In other words, XLAT sets AL to 41h because this value is located at HEXA tabie : r
Cu offset 0Ah. Please note'that the 41h is the ASCII code for hex digit A. The followmg o
" sequence of instructions would accomphshed this:

MOV AL, 0OAh ©; index value ¢
MOV BX, OFFSET HEXA ; offset of the table HEXA
XLAT RN

p)

The above tasks can be done without XLAT instruction but it will requ1re a long serres -
of instructions such as:

L%

MOV AL, 0Ah mdex value :
MOV BX, OFFSET HEXA : offset of the table HEXA
PUSH BX . ; save the offset - - . -
ADD BL, AL "7 _;add index value to table

; o ' ;HEXAoffset .
MOV AL, [BX] - - ; retrieve the entry

POP BX - restore BX-
Let us use the instruction XLAT for data encoding. When'ydﬁ want te transfer a
message through a telephone line, then such encoding may be a good way of
preventing other users from reading it.-Let us show a sample program for encoding.

PROGRAM 1:

; A program for encoding ASCII Alpha numerics.

: ALGORITHM:

; create the code table

Assembly Language -
Programming .
(Part 1T)

, read an input string character by character
; translate it using code table
; output the strings

PATA SEGMENT
CODETABLE DB 48 DUP (0) ; no translation of first
o ;48 ASCII
DB ‘4590821367° ; ASCII codes 48 —
;57 (30h - 39h)
DB 7 DUP (0) ; no translation of
these 7 characters
DB ‘GVHZUSOBMIKPICADLFTYEQNWXR'
DB 6 DUP (0) ; no translation
DB ‘gvhzusobmikpjcadiftyeqnwxr’
DB 133 DUP (0) ; no translation of remaining
; character
DATA ENDS
CODE SEGMENT
MOV AX, DATA
MOV DS, AX ; initialize DS ‘
MOV BX, OFFSET CODETABLE ; point to lookup table
- GETCHAR: N .
L MOV AH, 06 ; console input no wait
'} - MOV DL, OFFh ; specify input request
i INT 21h ; call DOS
; 1Z QUIT ; quit if no input is waiting
. MOV DL, AL ; save character in DL
XLAT CODETABLE ; translate the character
CMP AL, 0 ; translatable?
JE PUTCHAR ; N0 : write it as is.
MOV - DL, AL ; yes : move new character
; to DI,
PUTCHAR: ,
’ MOV AH, 02 ; wiitc DL to output
INT 21h ' ' ;
JMP GETCHAR ; get another character
QUIT: MOV . AX, 4C00h
- INT 21h
CODE ENDS
END ‘
Discussion:

The program above will code the data. For example, a line from an input file will be

encoded:

- A SECRET Message
G TUHFUY Juttgou

(Read from an input file)
(Encoded output)

The program above can be run using the following command line. If the program file

name is coding.asm

coding infile > outfile

79

Assembly Language
Programming

80

The infile is the input data file, and outfile is the output data file.
You can write more such applications using 8086 assembly tables.

& Check Your Progress 1

1.

2.

Write a program to convert all upper case letters to lower case.

..

State True or False :

a. Table handling cannot be done without using XL AT instruction. D

b. In XLAT instruction AX register contains the address of the first entfy
of the table.

¢. In XLAT instruction the desired element value is returned in AL [__—l
register.

4.3 MODULAR PROGRAMMING

Modular programming refers to the practice of writing a program as a series of

.independently assembled source files. Each source file is a modular program designed

to be assembled into a separate object file. Each object file constitutes a module. The
linker collects the modules of a program into a coherent whole.

There are several reasons a programmer might choose to modularise a program.

L.

2.

bt

e B

Modular programming permits breaking a large program into a number of
smaller modules each of more manageable size.

- Modular programming makes it possible to link source code written in two
separate languages. A hybrid program written partly in assembly language and
partly in higher level language necessarily involves at least one module for each
language involved. ,

Modular programming allows for the creation, maintenance and reuse of a
library of commonly used modules.

Modules are easy to comprehend.

Different modules can be assigned to different programs.

Debugging and testing can be done in a more orderly fashion.

Document action can be easily understood.

Modifications may be localised to a module.

A modular program can be represented using hierarchical diagram:

Main Module
Module A Module B : 4 Module C -

Module D Module E

Assembly Language
Programming
(PartI1)

The advantages of modular programming are:

1. Smaller, easier modules to manage
2. Code repetition may be avoided by reusing modules.

You can divide a program into subroutines or procedures. You need to CALL the
procedure wheriever needed. ‘A subroutine call transfers the control to subroutme
instructions and brings the control back to calling program.

4.3.1 The Stack

A procedure call is supported bya stack So let us discuss stack in assembly
Stacks are Last In First Out data structures, and are used for storing the return
addresses of the procedures and for parameter passmg and saving the return value.

In 8086 microprocessor a stack is created in the stack segment The SS reglster stores
the offset of stack 'segment and SP register stores the top of the stack. A value is
pushed in to top of the stack or taken out (poped) from the top of the stack The stack
segment can be initialized as follows ‘

STACK. SEG SEGMENT STACK
DW 100 ‘DUP (0) -

. TOSLABEL -WORD -

STACK_SEG ENDS . T

CODE SEGMENT
ASSUME CS:CODE, SS:STACK_SEG
MOV AX, STACK_SEG o
MOV SS,AX. ~, initialise stack segment

LEA SP,TOP ; initialise stack pointer
CODE ENDS ‘ - - '
END

The directive STACK SEG SEGMENT STACK declares the loglcal segment for the
stack segment, DW 100 DUP(O) assigns actual size of the stack ‘to 100 words. All"

* locations of this stack are initialized to zero. The stacks are identified by thé stack top
and that is why the Label Top of Stack (TOS) has been selected. Please note that the
stack in 8086 is a WORD stack. Stack facilities involve the use ‘of indirect addressmg
t,hrough a speclal regrster, the stack pointer (SP) SPis automatlcally decremented as
items are put on the stack’ and incremented as ‘they are retrieved. Putting something on
_ to stack is called a PUSH and taking it off is called a POP. The address of the last
element pushed on to the stack is known as.the.top.of the stack (TOS).

Name BN Mnemonics Description

Push onto the stack PUSH SRC SPESP -2

ol lS'P+(1 and SP location are
‘ as51gn the SRC

Pop from the stack . ~[POPDST ' DST is a assigned values

stored at stack top
"SP& SP+20

4.3.2 | Far and Near Procedu_res

Procedure provides-the primary means of breaking the code in a program ; into
modules. Procedures have one major drsadvantage that is, they require extra code to

81

Assembly Language
. Programming

82

join them together in such a way that they can communicate with each other. This
extra code is sometimes referred to as linkage overhead. :

A procedure call involves:

1. Unlike other branch instructions, a procedure call must save the address of the
next instruction so that the return will be able to branch back to the proper
place in the calling program.

2. The registers used by the procedures need to be stored before their contents
are changed and then restored just before the procedure is finished.

3 A procedure must have a means of communicating or sharing data with the
procedures that call it, that is parameter passing.

Calls, Returns, and Procedures definitions in 8086
The 8086 microprocessor supports CALL and RET instructions for procedure call,

The CALL instrugtion not only branches to the indicated address, but also pushes the
return address onto the stack. In addition, it also initialized IP with the address of the
procedure. The RET instructions simply pops the return address from the stack. 8086
supports two kinds of procedure call. These are FAR and NEAR calls.

The NEAR procedure call is also known as Intrasegment call as the called procedure
is in the same segment from which call has been made. Thus, only IP is stored as the
return address. The IP can be stored on the stack as:

-~

Initial stack top

IP HIGH
SP points here after NEAR call I IP LOW

Stack segment base (§§) ————>

Low address

Please note the growth of stack is towards stack segment base. So stack becomes full
on an offset 0000h. Also for push operation we decrement SP by 2 as stack is a word
stack (word size in 8086 = 16 bits) while memory is byte organised memory.

FAR procedure call, also known as intersegment call, is a call made to separate code
segment. Thus, the control will be transferred outside the current segment. Therefore,
both CS and IP need to be stored as the return address. These values on the stack after
the calls look like:

Initial stack top >
b CS HIGH
CS LOW
, IP HIGH
SP points here after FAR call ——> | [P LOW
Stack segment base (S§) —————=>
Low address:

When the 8086 executes the FAR call, it first stores the contents of the code segment
register followed by the contents of IP on to the stack.-A RET from the NEAR
procedure. Pops the two bytes into IP. The RET from the FAR procedure pops four
bytes from the stack.

Procedure i$ defined within the source code by placing a directive of the form:

<Procedure name> PROC <Attribute> ' Assemll,’ly Language
. _ rogrammin;

. . . . (Part II)
A procedure is terminated using:

<Procedure name> ENDP

The <procedure name> is the identifier used for calling the procedure and the
<attribute> is either NEAR or FAR. A procedure can be defined in:

1. The same code segment as the statement that calls it.

2. A code segment that is different from the one containing the statement that calls
it, but in the same source module as the calling statement. \

3. A different source module and segment from the calling statement.

In the first case the <attribute> code NEAR should be used as the procedufe and code
are in the same segment. For the latter two cases the <attribute> must be FAR.

Let us describe an example of procedure call using NEAR procedure, which contains
a call to a procedure in the same segment.

PROGRAM 2:

Write a program that collects in data samples from a port at 1 ms interval, The upper 4
bits collected data same as mastered and stored in an array in successive locations. b

; REGISTERS :Uses CS, SS, DS, AX, BX, CX, DX, SI, SP
; PROCEDURES : Uses WAIT
’ \

DATA_SEG SEGMENT

PRESSURE DW 100 DUP(0) ; Set up array of 100 words
NBR_OF_SAMPLES EQU 100
PRESSURE_PORT EQU OFFF8h ; hypothetical input port

DATA_SEG ENDS

STACK SEG SEGMENT STACK :
DW 40 DUP(0) ; set stack of 40 words
STACK_TOP LABEL WORD .
STACK_SEG ENDS

CODE_SEG SEGMENT
ASSUME CS:CODE_SEG, DS:DATA_SEG, SS:STACK_SEG

START: MOV AX, DATA_SEG ; Initialise data segment register
' MOV DS, AX
MOV AX, STACK SEG ; Initialise stack segment register
MOV SS§, AX
MOV SP, OFFSET STACK - TOP ; initialise stack pointer top of
; stack
LEA SI, PRESSURE ; SI points to start of array
; PRESSURE
MOV BX,NBR _OF_SAMPLES ; Load BX with number
‘ ; of samples
MOV DX, PRESSURE _PORT ; Point DX at input port
; it can be any A/D converter or .
; data port.
READ NEXT: IN AX, DX ; Read data from port
-; please note use of IN instruction
AND AX, OFFFH ; Mask upper 4 bits of AX
MOV [SI], AX ; Store data word in array
CALL WAIT , ; call procedures wait for delay

b X)

Assemibly Language

Programiming

84

INC SI ' 3 Incremtent SI by two as dealing with

INC SI ; 16 bit words and not bytes
DEC BX ; Decrement sample counter:
INZ READ NEXT ;Repeattill 100
’ ; samples are collected
STOP: NOP , »
WAIT PROC =~ NEAR U ‘
MOV~ 'CX, 2000H - ; Load delay value
. B l.IltO CX .
HERE:.. 1OOP . HERE . Loop unt11 CX O
RET - . : : ,
WAIT ENDP
CODE_SEG ENDS
y . ~END
Discussion:

Please note that the CALL to the procedure as, above does not mdrcate whether the
call is to a NEAR procedure ora FAR procedure "This distinction is made at the time
of defining the procedure. ,

The procedure above can also be made a FAR procedure by changlng the deﬁnmon of
the procedure as:, : . A o : :

WAIT PROC FAR

WAIT ENDS -

The procedure can now be deﬁned m another segment if the need so be in the same
assembly language file, , : o

4.3.3 Parameter Passing in Procedures

Parameter passing is a very important concept in assembly language. ‘It'ma‘kes the
assembly procedures ‘more general. Parameter can be passed to and from to the main
procedures. The parameters can be passed in theé following ways to a procedure:

1. Parameters passing through registers :

2. Parameters passmg through dedicated memory location accessed by name - -
3. Parameters passmg through poitters passed in reglsters o CT
4.~ Parameters passing using stack. ‘

Let us discuss a program that uses a procedure for convertmg a BCD number to binary
number r

PROGRAM 3 | |
Conversron of BCD number to bmary using a procedure
Algorithim for conversxon procedure k
Take a packed BCD digit and separate the two digits of BCD.

¢ Multiply the upper digit by 10 (0Ah)
Add the lower digit to the result of multiplication

The implementation of the procedure will be dependent on the parameter-passing:
scheme, Lt us demonstrate thlS Wlth the help of three programs

Program 3 (a) Use of reglsters for parameter passmg Thrs program uses AH register
for passing the pararneter

We are agsuming that:data is available in memory location. BCD and the result is
stored in BIN : : '

;REGISTERS : Uses CS, DS, SS, SP; AX
;PROCEDURES : BCD-BINARY
DATA_SEG SEGMENT
‘ "BE€D :+ +DB2sh . . -+ storage for BCD value - ¢
0 " BIN o DB? oo -+ i storage for binary value -
DATA SEG e o ENDS o B RN ST
STACK SEG ;- = SEGMENT. STACK: : oo
- DW 200 DUP(O) ; stack of 200 words
TOP STACK LABEL - WORD - o oo
STACK_SEG ENDS ,
;CODE SEG - SEGMENT
< ASSUME" CS CODE SEG, DS:DATA_ SEG SS STACK SEG
START: MOV : - AX, DATA SEG ; Initialise data segment: -
MOV DS, AX ' ; Using AX register "' 2
MOV AX, STACK _ SEG ; Initialise stack \
MOV SS, AX T T Segment register, Why ©
e ; stack?
L MOV ;SP ‘OFFSET TOP._ STACK Inmahse stackpomter i
MOV . "AH,BCD o
: CALL o ‘B,CD_BINARY) : Do the conversion ,
MOV . BIN,AH | ; Store the result j in. the
S ' ; memory
; Remaining program can be put here SRS
;PROCEDURE : BCD_BINARY - Converts BCD numbers to blnary '
JINPUT - T AH iwith BCD-value - . - it
;OUTPUT. ¢ - Awathbmaryvalue - e AR
:DESTROYS ~ tAX - - ,
BCD BINARY PROC NEAR : 5 R L
PUSHF , ~ ; Save flags R
CUPUSH U BX ~; and registers used in procedure
"PUSH CX - ~ ; before starting the conversion
_ "~ ; Do the conversion'
MOV BH, AH ; Save copy of BCD in BH
AND BH, OFh . ; and mask the higher bits. The lower digit -
BT T ’~/¢1smBH e
AND AH, OFOh - ; mask the Tower'bits. The hlgher dtglt is in- AH
; but'in upper 4 bits. - -
MOV CH,04 . ; so move upper BCD d1g1t to lower
. “ROR AH,CH ; four bits in AH : Coh
MOV ALLAH - - - ; move the digit in AL for multlphcatlon :
MOV - BH; 0Ah . put 10 in BH T
“IMUL . BH - ; Multiply upper BCD d1g1t in AL
o o ; by 0Ah in BH, the result i$in AL
MOV AH’, AL ~; the maximum/ minimum mamber would not
I 7 exceed 8 bits'so move AL to AH
ADD AH; BH U ; Add lower BCD digit to MUL result
End of ‘conversion, bmary result in AH -
- POP™ CX SR ;Restore reglsters
POP - BX
POPF

- \Asnml‘:ly Languoage

 Programming
(Part 1T)

85

Assembly Language
Programming

86

RET ; and return to calling program
BCD_BINARY ENDP
CODE_SEG ENDS

END START

Discussion:

The above program is not an optimum program, as it does not use registers minimally.
By now you should be able to understand this module. The program copies the BCD
number from the memory to the AH register. The AH register is used as it is in the
procedure. Thus, the contents of AH register are used in calling program as well as
procedure; or in other words have been passed from main to procedure. The result of
the subroutine is also passed back to AH register as retumed value. Thus the callmg
program can find the result in AH register. -

The advantage of using the registers for passing the parameters is the ease with which
they can be handled, The disadvantage, however, is the limit of parameters that can be
passed. For example one cannot pass an array of 100 elements to a procedure using -
registers.

Passing Parameters in General Memory

The parameters can also be passed in the memory. In such a scheme, the name of the’
memory location is used as a parameter. The results can also be returned in the same
variables. This approach has a severe limitation. It is that you will be forced to usé the
same memory variable with that procedure. What are the implications of this bound?
Well in the example above we will be bound that variable BCD must contain the
input. This procedure cannot be used for a value stored in any other location. Thus, it
is a very restrictive method of procedural call.

Passing Parameters Using Pointers

This method overcomes the disadvantage of using variable names directly in the
procedure. It uses registers to pass the procedure pointers to the desired data. Let us
explain it further with the help of a newer version of the last program.

3

Program 3 (c) version 2: \

DATA_SEG - SEGMENT
" BCD DB 25h ; Storage for BCD test value
. BIN DB ? ; Storage for binary value
DATA_SEG ENDS :
STACK_SEG SEGMENT STACK . :
DW 100 DUP(0) ; Stack of 100 words
TOP_STACK LABEL WORD
STACK_SEG ENDS .

CODE_SEG SEGMENT
ASSUME CS:CODE_SEG, DS: DATA SEG, SS:STACK_SEG

START: MOV AX, DATA_SEG ; Initialize data
MOV DS, AX o ; segment using AX register
MOV AX, STACK_SEG ~; initialize stack
MOV S§, AX ; segment. Why stack?

MOV SP, OFFSET TOP_STACK ; initialize stack pointer
; Put pointer to BCD storage in SI and DI prior to procedure call.

MOV SI, OFFSET BCD ~; SInow points to BCD_IN
MOV DI, OFFSET BIN ; DI points BIN_ VAL
: o ; (returned value)

CALL BCD_BINARY / ; Call the conversion ’

Assembly Language

’ ’ procgdure . Programming
NOP ; Continue with program (Part IT)
; here
.; PROCEDURE : BCD_BINARY Converts BCD numbers to binary.
; INPUT : SI points to location in memory of data
; OUTPUT : DI points to location in memory for result
; DESTROYS : Nothing
BCD_BINARY PROC NEAR
PUSHF . ; Save flag register
PUSH AX ; and AX registers
PUSH BX ; BX
PUSH - CX ; and CX
MOV AL, [SI] ; Get BCD value from memory
, ; for conversion
MOV BL, AL ; copy it in BL also
AND BL, OFh ; and mask to get lower 4 digits
AND - AL, OFOh ; Separate upper 4 bits in AL
MOV CL, 04 ; initialize counter CL so that upper digit
ROR AL, CL ; in AL can be brought to lower 4 bit
- . ; positions in AL
MOV BH, 0Ah ; Load 10 in BH
“MUL BH ; Multiply upper digit in AL by 10
' ; The result is stored in AL
ADD AL, BL ; Add lower BCD digit in BL to result of
; multiplication

; End of conversion, now restore the ongmal values prior to call. All calis will be in
; reverse order to save above. The result is in AL register.

MOV [DI], AL ; Store binary value to memory
POP CX ; Restore flags and
POP BX ; registers -
POP AX - ,
POPF |
RET
BCD_BINARY ENDP
CODE_SEG ENDS.
-~ END . START
Discussion:

Ed

In the pfogram above, Svaoints to the BCD and the DI points to the BIN. The
instruction MOV AL,[SI] copies the byte pointed by SI to the AL register. Likewise,
MOV [DI], AL transfers the result back to memory location pointed by DI.

This scheme allows you to pass the procedure pointers to data anywhere in memory.
You can pass pointer to individual data element or a group of data elements like arrays
and strings. This approach is used for parameters passing to BIOS procedures.

Passing Parameters Through Stack

The best technique for parameter passing is through stack. It is also a standard
technique for passing parameters when the assembly language is interfaced with any
high level language. Parameters are pushed on the stack and are referenced using BP .
register in the called procedure. One important issue for parameter passing through
stack is to keep track of the stack overflow and underflow to keep a check on errors..
Let us revisit the same example, but usmg stack for parameter passing.

87

-Assembly Language
P ogreming

88

PROGRAM 3 Version ¥

DATA_SEG SEGMENT .
BCD DB 25h ; Storage for BCD test value -
w0 BIN.- . .. DB ? i ;Storage for binary value:
DATA_SEG ENDS e . Do

STACK_SEG SEGMENT STACK BRSO S
DwW 100 DUP(0) ; Stack of 100 words
TOP_ STACK LABEL WORD o T
STACK_SEG ENDS

CODE_SEG SEGMENT T :
ASSUME CS:CODE_SEG, DS:DATA_SEG, SS:STACK_SEG

START: . - MOV.. - 'AX;DATA * ; Initialise data segment
MOV : DS, AX . . ; using AX register
MOV - AX, STACK-SEG. _; initialise stack segment
oL MOV S8, AX ,usingAXregister
.. % MOV- 'SP, OFFSET TOP_ STACK initialise stack pointer
“ e MOV AL, BCD : .; Move BCDrvalue into AL
. PUSH -~ AX i"? - ¢ and push it-onto word stack

CALL" BCD. ~BINARY ; Do the conversion
POP .+ AXi .. « ; Get the bindry value

s MOV ,BIN AL - ‘yand save it

> sNQP» - : ; Continue with program

S PROCEDURE. .7 ¢ ::‘:BCD BINARY Converts’ BCD numbers to binary.

; INPUT - » None = BCD value assumed to be on stack before call
;OUTPUT 1 . . :Nope- Binary value on top ofstack after return” o *
DESTROYS , :?Nothmg Sl , C RN

BCD BINARY PROC NEAR o BT

PUSHF S "; Save flags:i”
PUSH AX , , jand reglsters AX
PUSH BX ‘ ‘ ; BX ~
PUSH CX ‘ ' ; CX.

. PUSH BP - U BP, Why BP? ,
MOV . BP,SP 007, Make a copy ofthe' G

P R ;fstack pointer in BP -

MOV AX, [BP+ 12] . Get BCD number from

; stack. But why it.is on..

; BP+12 locatlon‘? Please note 5 PUSH statements + 1 call whxch is intra- -segment. (so
;just IP i is stored) o totél 6 words are’ pushed aﬂer AX has been pushed and since it is
; a word stack 'so the BCD value i is stored on'éx 2 = '12 }ocanons under stack Hence

s [BP + 12] (refér to the figure given on next pagé).’”
MOV BL,AL - ; Savecopyof BCD in BL
© AND: - BL, OFh" ; mask Tower 4 bits -~
srl T EAND AL FOH m ik Separate upper 4bits
"‘MOV‘- CCL04 g ; Move upper BCD digit to low

ROR AL, CL " ; position BCD digit for multiply location
MOV BH, 0Ah ~ .;Load 10 in BH
MUL BH Multlply upper BCD digit in AL by 10
G neiuertt v o stheresultisin AL . o
~ADD ... AL;BL .. -+ 3 Add lower BCD. dlglt to result
MOV, ,[BP +,12], AX Put blnary result on stack
i ;,;Restoxe flags and regxsters . TS
~POP. - BP: .ot
CPOP. .. CX .. i
POP BX
- POP AX

POPF

RET
BCD_BINARY ENDP ,
CODE_SEG ENDS
END START

Discussion:

The parameter is pushed on the stack before the procedure call. The procedure call
causes the current instruction pointer to be pushed on to the stack. In the procedure
-flags, AX, BX, CX and BP registers are also pushed in that order. Thus, the stack
looks to be: -

Before push AX (SP = 0090h) > | X ,
AH

After push AX (SP = 008Eh) . > [AL
IP HIGH
IP LOW
FLAGH
FLAG L
AH
AL
BH
BL
CH
CL
: BP HIGH
After PUSH BP (SP = 0082h) BP LOW

Stack segment base (SS = 6000h)

The instruction MOV BP, SP transfers the contents of the SP to the BP register. Now
BP is used to access any location in the stack, by adding appropriate offset to it. For
example, MOV AX, [BP + 12] instruction transfers the word beginning at the 12th
byte from the top of the stack to AX register. It does not change the contents of the BP
register or the top of the stack. It copies the pushed value of AH and AL at offset
008Eh into the AX register. This instruction is not equivalent to POP instruction.

Stacks are useful for writing procedures for multi-user system programs or recurvise
procedures. It is a good practice to make a stack diagram as above while using
procedure call through stacks. This helps in reducing errors in programming.

4.3.4 External Procedures

These procedures are written and assembled in separate assembly modules, and later
are linked together with the main grogram to form a bigger module. Since the
addresses of the variables are defined in another module, we need segment
combination and global identifier directives. Let us discuss them briefly.

Segment Combinations

In 8086 assembler provides a means for combining the segments declared in different
modules. Some typical combine types are:

1. PUBLIC: This combine directive combines all the segments having the same
names and class (in different modules) as a single combined segment.

2. COMMON: If the segments in different object modules have the same name and
the COMMON combine type then they have the same beginning address. During
execution these segments overlay each other.

Assembly Language
Programming

(Part I1)

&9

Assembly Language
Programming

90

3. STACK: If the segments in different object modules have the same name and the
combine type is STACK, then they become one segment, with the length the sum
of the lengths of individual segments.

These details will be more clear after you go through program 4 and further readings.

Identifiers

a) Access to External Identifiers: An external identifier is one that is referred in
one module but defined in another. You can declare an identifier to be external
by including it on as EXTRN in the modules in which it is to be referred. This
tells the assembler to leave the address of the variable unresolved. The linker
looks for the address of this variable in the module where it is defined to be
PUBLIC.

b) Public Identifiers: A public identifier is one that is defined within one module
of a program but potentially accessible by all of the other modules in that
program. You can declare an identifier to be public by including it ona
PUBLIC directive in the module in which it is defined.

Let us explain all the above with the help of the following example:
PROGRAM 4:

Write a procedure that divides a 32-bit number by a 16-bit number. The procedure
should be general, that is, it is defined in one module, and can be called from another
assembly module.

; REGISTERS :Uses CS, DS, S§, AX, SP, BX, CX
; PROCEDURES : Far Procedure SMART_DIV
DATA_SEG SEGMENT WORD PUBLIC
DIVIDEND DW 2345h, 89AB ; Dividend =
; 89AB2345H
DIVISOR bw 5678H ; 16-bit divisor
MESSAGE ne ‘INVALID DIVIDE', ‘§’

DATA_SEG ENDS

MORE_DATA SEGMENT A0ORD
QUOTIENT ALY 2 DUP(0)
REMAINDER YW 0
MORE_DATA ENDS

STACK SEG SEGMENT STACK
DW 100 DUP(0) ; Stack of 100 words
TOP - STACK LABEL WORD ; top of stack pointer
STACK_SEG ENDS

PUBLIC DIVISOR
PROCEDURES SEGMENT PUBLIC ; SMART DIVis declared as an
EXTRN SMART DIV: FAR ; external label in procedure

; segment of type FAR
PROCEDURES ENDS
; declare the code segment as PUBLIC so that it can be merged with other PUBLIC
; segments ‘
CODE_SEG SEGMENT WORD PUBLIC
ASSUME CS:CODE, DS:DATA_SEG, SS:STACK SEG

START: MOV AX, DATA_SEG ; Initialize data segment
MOV DS, AX ; using AX register

MOV AK, STACK_SEG ; Initialize stack segment

MOV SS, AX ; using AX register Assembly Language

MOV SP, OFFSET TOP_STACK ; Initialize stack pointer r o pare 1
MOV AX, DIVIDEND ; Load low word of '
; dividend
MOV DX DIVIDEND + 2 ; Load high word of
; dividend
MOV CX, DIVISOR ; Load divisor

CALL SMART_DIV
; This procedure returns Quotient in the DX:AX pair and Remainder in CX register.
; Carry bit is set if result is invalid.

JNC SAVE_ALL ; IF carry = 0, result valid
JMP STOP ' ; ELSE carey set, don’t
; save result
ASSUME DS:MORE_DATA ; Change data segment
SAVE _ALL: PUSH DS ; Save old DS
MOV BX, MORE _DATA ; Load new data segment
MOV DS, BX ; register
MOV QUOTIENT, AX ; Store low word of
; quotient
MOV QUOTIENT + 2, DX ; Store high word of
, ; quotient
MOV REMAINDER, CX ; Store remainder
ASSUME DS:DATA_SEG ,
POP DS ; Restore initial DS
JMP ENDING

STOP: MOV DL, OFFSET MESSAGE
MOV AX, AH 09H

INT 21H
ENDING: NOP
CODE_SEG ~ ENDS

END START
Discussion:

The linker appends all the segments having the same name and PUBLIC directive
with segment name into one segment. Their contents are pulled together into
consecutive memory locations.

The next statement to be noted is PUBLIC DIVISOR. It tells the assembler and the
linker that this variable can be legally accessed by other assembly modules. On the
other hand EXTRN SMART_DIV:FAR tells the assembler that this module will
access a label or a procedure of type FAR in some assembly module. Please also note
that the EXTRN definition is enclosed within the PROCEDURES SEGMENT
PUBLIC and PROCEDURES ENDS, to tell the assembler and linker that the
procedure SMART _DIV is located within the segment PROCEDURES and all such
PROCEDURES segments need to be combined in one. Let us now define the
PROCEDURE module:

. PROGRAM MODULE PROCEDURES

; INPUT : Dividend - low word in AX, high word in DX, Divisor in CX

; OUTPUT : Quotient - low word in AX, high word in DX. Remainder in CX
; Carry - carry flag is set if try to divide by zero

; DESTROYS : AX, BX, CX, DX, BP, FLAGS '

DATA_SEG SEGMENT PUBLIC ; This block tells the assembler that

EXTRN DIVISOR:WORD ; the divisor is a word variable and is
DATA _SEG ENDS ; external to this procedure. It would be
‘ ; found in segment named DATA_SEG
" PUBLIC SMART_DIV ; SMART DIV is available to

; other modules. It is now being defined
N

Assembly Language
Programming

92

; in PROCEDURES SEGMENT.

PROCEDURES SEGMENT PUBLIC
SMART_DIV PROC FAR

ASSUME CS:PROCEDURES, DS:DATA_SEG

CMP DIVISOR, 0 ; This is just to demonstrate the use of
; external variable, otherwise we can
; check it through CX register which
; contains the divisor.

JE ERROR_EXIT ; IF divisor = 0, exit procedure
MOV BX, AX ; Save low order of dividend
MOV AX, DX ; Position high word for Ist divide
MOV DX, 0000h ;Zero DX
DIV CX ; DX:AX/CX, quotient in AX,
o ; remainder in DX
MOV BP, AX ; transfer high order of final result to BP
MOV AX, BX ; Get back low order of dividend. Note

; DX contains remainder so DX ; AX is
; the actual number

DIV CX ; DX:AX/CX, quotient in AX,
; 2" remainder that is final remainder
; in DX
MOV CX, DX ; Pass final remainder in CX
MOV DX, BP ; Pass high order of quotient in DX
; AX contains lower word of quotient
CLC ; Clear carry to indicate valid result
IMP EXIT ; Finished '
ERROR_EXIT: STC ; Set carry to indicate divide by zero
EXIT: RET

SMART_DIV ENDP
PROCEDURES ENDS

END

Discussion:

The procedure accesses the data item named DIVISOR, which is defined in the main,
therefore the statement EXTRN DIVISOR: WORD is necessary for informing
assembler that this data name is found in some other segment. The data type is defined
to be of word type. Please not that the DIVISOR is enclosed in the same segment
name as that of main that is DATA_SEG and the procedure is in a PUBLIC segment.

& Check Your Progress 2 | F

1.

(2)
(®)
(c)

d

()
®

State True or False

A NEAR procedure can be called only in the segment it is defined.

While making a call to a procedure, the nature of procedure that is NEAR
or FAR must be specified.

A FAR call uses one word in the stack for storing the return address. . l—_—_l
Parameter passing through register is not suitable when large numbers of
parameters are to be passed. '
Parameter passing in general memory is a flexible way of passing l
parameters.

Parameter passing through pointers can be used to pass a group of data
elements.

Assembly Language
Programming
. (Partll)

(f) Parameter passing through stack is used whenever assembly language
programs are interfaced with any high level language programs.

(h) In multiuser systems parameters should be passed using pointers.
(i) A variable say USAGE is declared in a PROCEDURE segment, however
it is used in a separate module. In such a case the declaration of USAGE

should contain EXTRN verb.

(i) A segment if declared PUBLIC informs the linker to append all the
segments with same name into one.

O o D

2. Show the stack if the following statements are encountered in sequence.

a) Callto a NEAR procedure FIRST at 20A2h:0050h
b) Call to a FAR procedure SECOND at location 3000h:5055h
¢} RETURN from Procedure FIRST.

4.4 INTERFACING ASSEMBLY LANGUAGE
ROUTINES TO HIGH LEVEL LANGUAGE
PROGRAMS

By now you can write procedures, both external and internal, and pass parameters,
especially through stack, let us use these concepts, to see how assembly language can
be interfaced to some high level language programs. It is very important to learn this
concept, because then you can combine the advantages of both the types of languages,
that is, the ease of programming of high level languages and the speed and the scope
of assembly language. Assembly language can be interfaced with most of the high
level languages like C, C + + and database management systems.

What are the main considerations for interfacing assembly to HLL? To answer that we
need to answer the following questions:

How is the subroutine invoked?

How are parameters passed?

How are the values returned?

How do you declare various segments so that they are consistent across calling
program?

The answer to the above questions are dependent on the high level language (HLL).
Let us take C Language as the language for interfacing. The C Language is very
useful for writing user interface programs, but the code produced by a C compiler
does not execute fast enough for telecommunications or graphics applications.
Therefore, system programs are often written with a combination of C and assembly
language. functions. The main user interface may be written in C and spemahzed high
speed functions written in assembly language.

The guidelines for calling assembly subroutines from C are:

.(i) Memory model: The callmg program and called assembly programs must be
defined with the same memory model. One of the most common convention
that makes NEAR calls is MODEL SMALL, C
(ii) The naming convention normally involve an underscore (_) character precedifig
the segment or function name. Please note, however, this underscore is not used A
while making a call from C function. Please be careful about case sensitivity.

93

Assembly Language
Programming

94

You must give a specific segment name to the code segment of your assembly
language subroutine. The name varies from compiler to compiler. Microsoft C,
and Turbo C require the code segment name to be_ TEXT or a segment name
with suffix. TEXT. Also, it requires the segment name DATA for the data
segment.

(iii) The arguments from C to the assembly language are passed through the stack.
For example, a function call in C:

function_name (argl, arg2, ..., argn) ;

would push the value of each argument on the stack in the reverse order. That
is, the argument grgn is pushed first and arg/ is pushed last on the stack. A
value or a pointer to a variable can also be passed on the stack. Since the stack
in 8086 is a word stack, therefore, values and pointers are stored as words on
stack or multiples of the word size in case the value exceeds 16 bits.

(iv) You should remember to save any special purpose registers (such as CS, DS,
SS, ES, BP, SI or DI) that may be modified by the assembly language routine. If
you fail to save them, then you may have undesirable/ unexplainable
consequences, when control is returned to the C program. However, there is no
need to save AX, BX, CX or DX registers as they are considered volatile.

(v) Please note the compatibility of data types:

char Byte (DB)
int Word (DW)
long Double Word (DD)

(vi) Returned value: The called assembly routine uses the followed registers for
returned values:

char - AL
Near/ int AX
Far/ long DX : AX

Let us now look into some of the examples for interfacing.

4.4.1 Simple Interfacing
The following is a sample of the coding, used for procedure interfacing:

PUBLIC CUROFF
_TEXT SEGMENT WORD PUBLIC 'CODE'
ASSUME CS:_TEXT
_CUROFF PROC NEAR ; for small model

The same thing can be written using the newer simplified directives in the following '
manner:

PUBLIC CUROFF
.MODEL small,C
.CODE

CUROFF PROC

This second source code is much cleaner and easier to read. The directives . MODEL
and .CODE instruct the assembler to make the necessary assumptions and

adjustments so that the routine will work with a small model of C program. (Please

refer to Assembler manuals on details on models of C program. The models primarily Assembly Language

differ in number of segments). ngr(a]:::‘;ﬁ

FROGRAM 5:

Write an assembly function that hides the cursor. Call it from a C program.

. PUBLIC CUROFF
. MODEL small,C
. CODE
CUROFF PROC :
MOV AHJ3 ; get the current cursor position
XOR BX,BX ; empty BX register
INT 10h ; use int 10hto do above
OR CH,20h ; force to OFF condition
MOV AH,01 ; set the new cursor values
INT 10h
RET
CUROFF ENDP
END '
For details on various interrupt functions used in this program refer to further
readings.

The C program to test this routine is as follows:

include < stdio.h
void curoff(void);
void main()

printf("%s\n, "The cursor is now turning off);
curoff();

f

You can write another procedure in assembly language program to put the cursor on.
This can be done by replacing OR CH,20h instruction by AND CH,1Fh. You can call
this new function from C program to put the cursor on after the curoff.

4.4.2 Interfacing Subroutines With Parameter Passing

Let us now write a C program that calls the assembly program for parameter passing.
Let us extend the previous two programs such that if on function call 0 is passed then
cursor is turned off and if 1 is passed then cursor is turned on. The calling C program
for such may look like:

include < stdio.h
void cursw(int);
void main()

{
printf("%s\n", "the cursor is now turning off™);
cursw(0); /* call to assembly routine with 0 as parameter
getchar(); _
printf("%s\n","the cursor is now turning on");
cursw(l); /* call to assembly routine with parameter asl.
}

The variables in C or C + + are passed on the stack.

Let us now write the assembly routine:
' 95

' 1

Assembly Language PROGRAM 6:

Programming

Write a subroutine in C for toggling the cursor using old directives.

k]

; use small memory model for C — near code segment

_DATA SEGMENT WORD ‘DATA’
CURVAL EQU [BP+4] ; parameters

_DATA ENDS

_TEXT SEGMENT BYTE PUBLIC ‘CODE’

DGROUP GROUP _DATA '

' ASSUME CS: TEXT, DS:DGROUP, SS:DGROUP-

PUBLIC _CURSW

_CURSW PROC NEAR
PUSH BP ; BP register of caller is saved
MOV BP, SP ; BP is pointing to stack now
MOV AX, CURVAL
CMP AX, OH
JZ CUROFF ; Execute code for cursor off
CMP AX, O1H

' IZ CURON ; Execute code for cursor on

JMP OVER ; Error in parameter, do nothing

CUROFF: ; write code for curoff
IMP OVER

CURON: ; write code for curon

OVER: POP BP
RET ‘

_CURSW ENDP

_TEXT ENDS
END

Why the parameter is found in [BP+4]? Please look into the following stack for the

answer.
' ' Parametego orl) 1BP+4
‘ Return Address BP+2
0Old value BP+0
PROGRAM 7:

Write a subroutine in C that toggles the cursor. It takes one argument that toggles the
value between on (1) and off (0) using simplified directives:

PUBLIC CURSW
.MODEL small, C
.CODE
CURSW PROC switch:word
MOV AX,SWITCH ‘ ; get flag value

XOR AX,AX - ; test zero / nonzero

// routine to test the switch and accordingly

96 .

Assembly Language
Programming
(Parc II)

switch off or switch on the cursor //

CURSW ENDP
END

In a similar manner the variables can be passed in C as pointers also. Values can be
returned to C either by changing the variable values in the C data segment or by
returning the value in the registers as given earlier.

4.5 INTERRUPTS

Interrupts are signals that cause the central processing unit to suspend the currently
executing program and transfer to a special program called an interrupt handler, The
interrupt handler determines the cause of the interrupt, services the interrupt, and
finally returas the control to the point of interrupt. Interrupts are caused by events
external or internal 1o the CPU that require immediate attention. Some external events
that cause interrupts are:

- Completion of an 1/O process
- Detection of a hardware failure

An 8086 interrupt can occur because of the following reasons:

1. Hardware interrupts, caused by some external hardware device.
2. Software interrupts, which can be invoked with the help of INT instruction.
3. Conditional interrupts, which are mainly caused due to some error condition

generated in 8086 by the execution of an instruction.

When an interrupt can be serviced by a procedure, it is called as the Interrupt Service
Routine (ISR). The starting addresses of the interrupt service routines are. present in
the first 1K addresses of the memory (Please refer to Unit 2 of this block). This table
is called the interrupt vector table.

How can we wrile an Interrupt Servicing Routine? The following are the basic but
rigid sequence of steps:

1. Save the system context (registers, flags etc. that will be modified by the ISR).
2. Disable the interrupts that may cause interference if allowed to occur during this

ISR's processing

3. Enable those interrupts that may still be allowed to occur during this ISR
processing.

4. Determine the cause of the interrupt.

5. Take the appropriate action for the interrupt such as - receive and store data

from the serial port, set a flag to indicate the completion of the disk sector
transfer, etc.

6. Restore the system context.
7. Re-enable any interrupt levels that were blocked during this ISR execution.
8. Resume the execution of the process that was interrupted on occurrence of the

interrupt.

MS-DOS provides you facilities that enable you to install well-behaved interrupt
handlers such that they will not interfere with the operating system function or other
interrupt handlers. These functions are:

' Function] Action
“Int 21h function 25h Set interrupt vector
Int 21h function 35h Get interrupt vector
Int 21h function 31h Terminate and stay residents

97

Assembly Language

P : Here are a few rules that must be kept in mmd while writing down your own Interrupt
rogramming

"Service Routines:

1. Use Int 21h, function 35h to get the required IVT entry from the IVT. Save this
entry, for later use.

2. Use Int 21h, function 25h to modify the IVT.

3. If your program is not going to stay resident, save the contents of the IVT, and
later restore them when your program exits.

4. If your program is going to stay resident, use one of the terminate and stay
resident functions, to reserve proper amount of memory for your handler.

Let us now write an interrupt routine to handle “division by zero”. This file can be
loaded like a COM file, but makes itself permanently resident, till the system is
running.

This ISR is divided into two major sections: the initialisation and the interrupt
handler. The initialisation procedure (INIT) is executed only once, when the program
is executed from the DOS level. INIT takes over the type zero interrupt vector, it also
prints a sign-on message, and then performs a terminate and “stay resident exit”-
MS-DOS. This special exit reserves the memory occupied by the program, so that it is
not overwritten by subsequent application programs. The interrupt handler (ZDIV)
receives control when a divide-by-zero interrupt occurs.

CR EQU ODH ; ASCII carriage return
LF EQU 0Ah ; ASCII line feed

BEEP EQU 07h “ 3 ASCII beep code
BACKSP -~ EQU 08h ; ASCII backspace code

CSEG SEGMENT PARA PUBLIC 'CODE!
C ORG 100h
i . ASSUME CS:CSEG,DS: CSEG ES:CSEG,SS:CSEG

INIT PROC NEAR
MOV DX,0OFFSET ZDIV ; reset in.errupt 0 vector
: ; to address of new
; handler using function 25h, interrupt
MOV AX, 2500h ‘ ; 0 handles divide-by-zero
INT 21h
MOV AH,09 ; print identification message
INT 21h :
; DX assigns paragraphs of memory
; to reserve
MOV DX, ((OFFSET PGM_LEN + 15)/16) + 10h
MOV AX,3100h ; exit and stay resident
INT 21h ; with a return code = 0
INIT ENDP :
ZDIV PROC FAR * : *.; this is the zero-divide
; hardware interrupt handler.
STI , ; enable interrupts.
PUSH AX ; save general registers
PUSH BX ' :
PUSH CX
: PUSH DX
\ - PUSH SI '
PUSH DI
PUSH BP
PUSH DS

| PUSH ES
8

e 7

MOV
MOV
MOV
MOV
INT

ZDIV1: MOV
INT
CMP
JE
CMP

JE
MOV
MOV
INT
JMP

ZDIV2: MOV
INT

ZDIV3: MOV
‘ MOV
INT
POP
POP
POP
POP
POP
POP
POP
POP
POP
IRET
ZDIV ENDP

SIGNON

WARN

BAD
CRLF
PGM_LEN
CSEG ENDS

AX,CS

DS,AX ;
DX,OFFSET WARN ; Print warning "divide by
AH, 9 ; zero "and" continue or
21h ; quit?"

AH,1 ; read keyboard

21h

AL,'C ;s it 'C' or 'Q"?

ZDIV3 ; jump it is a 'C',

AL,'Q' '

ZDIV2 ; jump it's a'Q’

DX, OFFSET BAD ; illegal entry, send a
AH,9 ; beep, erase the bad char
21h ; and try again

ZDIV1

AX, 4CFFh ; user wants to abort the-
21h - ; program, return with

; return code = 255

DX,OFFSET CRLF ; user wishes to continue
AH,9 ; send CRLF

21h

ES ; restore general registers
DS ; and resume execution
BF

Dl

SI

DX

CX

BX

AX

DB CR, LF, 'Divide by zero interrupt'
DB . 'Handler Installed’

DB CRLE,'$'

DB CR, LF, 'Divide by zero detected:'
DB CR, LF 'Quit or Continue (C/Q) ?'
DB '$

DB BEEP, BACKSP, " BACKSP,'$'
DB CR,LE,$" :

EQU S$-INIT
"END

4.6 DEVICE DRIVERS IN ASSEMBLY

Device drivers are special programs ihstalled by the config.sys file to control
installable devices. Thus, personal computers can be expanded at some future time by

the installation of new devices.

The device driver is .com file organized in 3 parts.

1). The leader

2) The strategy procédure

Assembly Language
Programming
(Part 1)

" 99

Assembly Language
Programming

100

3) The interrupt procedure

The driver has either .sys or .exe extension and is originated at offset address 0000h.

The Header

- The header contains information that allows DOS to identify the driver. It also

contains pointers that allow it to chain to other drivers loaded into the system.

The header section of a device driver is 18 bytes in length and contains pointers and
the name of the driver.

Following structure of the header:

CHAIN DD -1 ‘ : link to next driver
ATTRDWO : driver attribute
STRT DW START : address of strategy
INTER DW INT : address if interrupt

DNAME DB ‘MYDRIVER' : driver name.

The first double word contains a ~1 that informs DOS this is the last driver in the
chain. If additional drivers are added DOS inserts a chain address in this double word
as the segment and offset address. The chain address points to the next driver in the
chain. This allows additional drivers installed at any time, '

The attribute word indicates the type of headers included for the driver and the type of
device the driver installs. It also indicates whether the driver control a character driver
or a block device.)

The Strategy Procedure

‘The strategy procedure is called when loaded into memory by DOS or whenever the
controlled device request service. The main purpose of the strategy is to save the
request header and its address for use by the interrupt procedure.

The request header is used by DOS to communicate commands and other
informations to the interrupt procedure in the device driver

The request header contains the length of the request header as its first byte. This is
necessary because the length of the request header varies from command to command.
The return status word communicate information back to DOS from the device driver.

The initialise driver command (00H) is always executed when DOS initialises the
device driver. The initialisation commands pass message to the video display
indicating that the driver is loaded into the system and returns to DOS the amount of
memory needed by the driver. You may only use DOS INT 21H functions 00H. You
can get more details on strategy from the further readings.

The Interrupt Procedure

The interrupt procedure uses the request header to determine the function requested by
DOS, It also performs all functions for the device driver. The interrupt procedures
must respond to at least the initialised driver command (O0HY and any other
commands required to control the device operated by the device driver. You must
refér to the further readings for more details and examples of device drivers.

Assembly Language

% Check Your Progress 3 Programming
: . (Part 11)

State True or False T|F

(a) Assembly language routines cannot be interfaced with BASIC
programs.

(b) The key issue in interfacing is the selection of proper parameter
passing method.

(c) - The value of arguments to be passed are pushed in the stack in
reverse order. D

(d) AX, BX, CX or DX registers need not be saved in interfacing of
assembly programs with high level language programs.

(e¢) Hardware interrupts can be invoked with the help of INT function.

2. What are the sequences of steps in an interrupt service routine?

4.7 SUMMARY

In the above module, we studied some programming techniques, starting from arrays,
to interrupts.

Arrays can be of byte type or word type, but the addressing of the arrays is always
done with respect to bytes. For a word array, the address will be incremented by two
for the next access.

As the programs become larger and larger, it becomes necessary to divide them into
smaller modules called procedures. The procedures can be NEAR or FAR depending
upon where they are being defined and from where they are being called. The
parameters to the procedures can be passed through registers, or through memory or
stack. Passing parameters in registers is easier, but limits the total number of variables
that can be passed. In memory locations it is straight forward, but limits the use of the
procedure. Passing parameters through stack is most complex out of all, but is a
standard way to do it. Even when the assembly language programs are interfaced to
Ligh level languages, the parameters are passed on stack.

Interrupt Service Routines are used to service the interrupts that could have arisen
because of some exceptional condition. The interrupt service routines can be
. modified- by rewriting them, and overwriting their entry in the interrupt vector table.

This completes the discussion on microprocessors and assembly language
programming. The above programming was done for 8086 microprocessor, but can be
tried on 80286 or 80386 processors also, with some modification in the assembler
directives. The assembler used here is MASM, Microsoft assembler. The assembly
language instructions remain the same for all assemblers, though the directives vary
from one assembler to another. For further details on the assembler, you can refer to
their respective manuals. You must refer to further readings for topics such as
Interrupts, device drivers, procedures etc.

101

Assembly Language .. -

Programming 4.8 SOLUTIONS/ ANSWERS

Check Your Progress 1

v 1. We will give you an algorithm using XLAT instruction. Please code and run the
program yourself.

e Take a sentence in upper case for example 'TO BE CONVERTED TO
LOWER CASE' create a table for lower case elements. ,
e Check that the present ASCII character is an alphabet in upper case. It
implies that ASCII character should be greater than 40h and less than 58h.
e If it is upper case then subtract 41h from the ASCII value of the character.
Put the resultant in AL register.
Set BX register to the offset of lower case table.
Use XLAT instructjon to get the required lower case value.
Store the results in another string.

2. (a) False (b) False (c) True -

Check Your Progress 2 . _
1. (a) True (b) False (c) False (d) True (e) False (f) True (g) True (h) False
(i) False (j) True. ‘
2. ‘
' = -
SP > : . .
SP > 00 00
’ 50) 50
30
. 00
50
> 55
. Low address
Original after (a) : after (b)

(c) The return for FIRST can occur only after return of SECOND. Therefore, the
stack will be back in original state.

Check Your Progress 3
1. (a) False (b) False (c) True (d) True (e) False

2.

Save the system context

Block any interrupt, which may cause interference
Enable allowable interrupts

Determine the cause of interrupt

Take appropriate action

Restore system context _
Enable interrupts which were blocked in Step 2

102

