UNIT1 MICROPROCESSOR
ARCHITECTURE

Structure Page No.
1.0 Introduction 5
1.1 Objectives 5
1.2 Microcomputer Architecture 5
1.3 Structure of 8086 CPU 7
1.3.1 The Bus Interface Unit
1.3.2. Execution Unit (EU) -
.4 Register Set of 8086 , 11
1.5 Instruction Set of 8086 -) ’ 13

1.5.1 Data Transfer Instructions
1.5.2 Arithmetic Instructions
1.5.3 Bit Manipulation Instructions
1.54 Program Execution Transfer Instructions
1.5.5 String Instructions -,
1.5.6 Processor Control Instructions
1.6 Addressing Modes 29
1.6.1 Register Addressing Mode
1.62 Immediate Addressing Mode
1.6.3 Direct Addressing Mode
1.6.4 Indirect Addressing Mode
1.7 Summary 33
1.8 Solutions/Answers] 33

1.0 INTRODUCTION

In the previous blocks of this course, we have discussed concepts relating to CPU
organization, register set. instruction set, addressing modes with a few examples. Let
us look at one microprocgssor architecture in regard of all the above concepts. We
have selected one of the Simplest processors 8086, for this purpose. Although the
processor technology is old, all the concepts are valid for higher end Intel processor.
Therefore, in this unit, we will discuss the 8086 microprocessor in some detail.

We have started the discm3fion of the basic microcomputer architecture. This
discussion is followed bvhe details on the components of CPU of the 8086
microprocessor. Then we hdve discussed the register organization for this processor.
We have also discussed the nstruction set and addressing modes for this processor.
Thus, this unit presents exhatitive details of the 8086 microprocessor. These details |
will then be used in Assembly Programming.

1.1 OBJECTIVES

After going through this unit, you should be able to:

o describe the features of the 8086 microprocessor;
» list various components of the 8086 microprocessor; and
¢ identify the instruction set and the addressing modes of the 8086 microprocessor.

1.2 MICROCOMPUTER ARCHITECTURE

The word micro is used in microscopes, microphones, microwaves, microprocessors,
microcomputers, microprogramming, microcodes etc. It means small. A

t

Assembly Language

Programming microprocessor is an example of VLSI bringing the whole processor to a single small

chip. With the popularity of distributed processing, the emphasis has shifted from the
single mainframe system to independently working workstations or functioning units
with their own CPU, RAM, ROM and a magnetic or optical disk memory. Thus, the
advent of the microprocessor has transformed the mainframe environinent to a
distributed platform.

Let us recapitulate the basic components of a microprocessor:

Data bus
Input Device]) i
4 Y
, B Control ' Control |- Memory
B \ v VOPorts emr CPU [“Bus |(RAM & ROM)
/ 1 ‘
QOutput Device ’ . y
Address bus

Figure 1: Components of a Microcomputer

Please note the following in the above figure:

. ROM stores the boot program.
. The path from CPU to devices is through Buses. But what would be the size of
these Buses? .

Bus Sizes

1. The Address bus: 8085 microprocessor haé 16 bit lines. Thus, it can access up to
2'¢ = 64K Bytes. The address bus-of 8086 microprocessor has-a 20 bits address
“bus. Thus it can access upto 2%° = IM Byte size of RAM directly.

2. Data bus is the number of bits that can be transferred ,simultaneously'. It is 16 bits
in 8086.

Microprocessors

The microprocessor is a complete CPU on a single chip. The main advantages of the ‘
MICTOPrOCcessor are: ‘

compact but powerful;

oan be microprogrammed for user’s needs; \
easily programmable and maintainable due to small size; and
useful in distributed applications.

A microprocessor must demonstrate:

More throughput

More addressing capability

Powerful addressing modes -

Powerful instruction set

Faster operation through pipelining

~ Virtual memory management. ‘
However, RISC machine do not agree with above principles.

‘Some of the most commercially available microprocessors are: Pentium, Xeon, G4
etc. -

e

The assembly language for more advanced chips subsumes the simplest 8086/ 8088
assembly language. Therefore, we will confine our discussions to Intel 8086/8088
assembly language. You must refer to the further readings for more details on
assembly language of Pentium, G4 and other processors.

All microprocessors execute a continuous loop of fetch and execute cycles.

while (1)
{
fetch (instruction); ,
execute (using date);
| :

1.3 STRUCTURE OF 8086 CPU

The 8086 microprocessor consists of two independent units: -

1. The Bus Interface unit, and
2. The Execution unit.

Please refer to Figure 2.

8086 Address and Data Bus
Bus Interface .
Unit (BIU) :
[]
Address Adder .
3 - »
5 .
' Stream *
ES 3 Queue
cs , f
SS YT emnnan
DS : ; :
v A o—T
(€16 An bis—> Co;:ruolz;st:t::

) SP "
- BP ¥
- 81 Operands
D] Co : Flags
[+— 16 bits —>]

R R L T T N i N e LR L T T

Figure 2: The CPU of INTEL 8086 Microprocessor

Microprocessor -
Architecture

Assembly [@nguage
. Programming

The word independent implies that these two units can function parallel to each other.
In other words they may be considered as two stages of the instruction pipeline.

1.3.1 The Bus Interface Unit

The BIU (Bus Interface Unit) primarily interacts with the system bus. It performs
almost all the activities relating to fetch cycle such as:

o Calculating the physical address of the next instruction’
o Fetching the instruction

¢ Reading or writing data memory or 1/O port from memory or Input/ Output.

The instruction/ data is then passed to the execution unit. This BIU consists of:

(a) The Instruction Queue

The instruction queue is used to store the instruction “bytes” fetched. Please
note two points here: that it is (1) A Byte (2) Queue. This is used to store
information in byte form, with the underlying queue data structure. The
advantage of this queue would only be if the next expected instructions are
fetched in advance, thus, allowing a pipeline of fetch and execute cycles.

(b) The Segment Registers

These are very important registers of the CPU. Why? We will answer this later.
In 8086 microprocessor, the memory is a byte organized, that is a memory
address is byte address. However, the number of bits fetched is 16 at a time. The
segment registers are used to calculate the address of memory location along
with other registers. A segment register is 16 bits long.

The BIU contains four sixteen-bit registers, viz., the CS: Code Segment, the DS:
‘Data Segment, the SS: Stack Segment, and the ES: Extra Segment. But what is
the need of the segments: Segments logically divide a program into logical
entities of Code, Data and Stack each having a specific size of 64 K. The
segment register holds the upper 16 bits of the starting address of a logical
group of memory, called the segment. But what are the advantages of using
segments? The main advantages of using segments are: '

~

. Logical division of program, thus enhancing the overall possible memory
use and minimise wastage.

. The addresses that need to be used.in programs are relocatable as they are
the offsets. Thus, the segmentation supports relocatability.

. Although the size of address, is 20 bits, yet only the maximum segment
" size, that is 16 bits, needs to be kept in instruction, thus, reducing
instruction length.

The 8086 microprocessor uses overlapping segments configuration. The typical
memory organization for the 8086 microprocessor may be as per the following figure.

8FFFFh _T‘ -4———— Top of extra segment
64K
6FFFFh T <« Top of stack segment
64K
4———— Offset = 0010h in stack segment
60000h 1 _ <«——— Stack segment base SS = 6000h
5489Fh T <4———— Top of code segment
. 64K }€——— IP is having offset 1234
. 448A0h _L <«———— Code segment base CS = 448Ah
3FFFFh T <¢——— Top of data segment
64K
' |€———— Offset = 0020h in data segment
30000h <«———— Bottom of data segment DS = 3000h

Flgure 3: Logical Organisation of Memory in INTEL 8086 Microprocessor

Although the size of each segment can be 64K, as they are overlapping segments we
can create variable sizé of segments, with maximum as 64K. Each segment has a
specific function. 8086 supports the following segments:

As per model of assembly program, it can have more than one of any type of
segments. However, at a time only four segments one of each type, can be active.

The 8086 supports 20 address lines, thus supports 20 bit addresses. However, all the
registers including segment registers are of only 16 bits. So how may this mapping of
20 bits to 16 bits be performed?)

Let us take a simple mapping procedure:

The top four hex digits of initial physical address constitute segment address.

" You can add offset of 16 bits (4 Hex digits) from 0000h to FFFFhto it . Thus,a .
typical segment which starts at a physical address 10000h will range from 10000h to
1FFFFh, The segment register for this segment will contain 1000H and offset will

Microprocessor
Architecture

Assembly Language
Programming

range from 0000h to FFFFh. But, how will the segmenf address and offset be added to
calculate physical address? Let us explain using the following examples:

Example 1 (In the Figure above)

The value of the stack segment register (8S) = 6000h
The value of the stack pointer (SP) which is Offset = 0010h

Thus, Physical address of the top of the stack is:

SS[6]0]0]0]0
SP +(0l0]1]0]

Implied zero

6 0 01 O

Physical Address

This calculation can be expressed as:
Physical address = SS (hex) x 16 + SP (hex)

Example 2

The offset of the data byte = 0020h
The value of the data segment register (DS) = 3000h
Physical address of the data byte

DS [3]0]0]0]|0 — ImpliedZero
Offset +|0[0[2]0]

Physical Address
30 020

This calculation can be expressed as physical address = DS (Hex) x 16 + Data byte
offset (hex). -

Example 3

The value of the Instruction Pointer, holding address of the instruction = 1234h
The value of the code segment register (CS) = 448Ah
Physical address of the instruction

cs[4]4]8lA]O ImpliedZero

titr)12(3]4

1P

Physical Address 4 5 A0 4

Physical Address = CS (Hex) x 16 +IP

(¢) Instruction Pointer

The instruction pointer points to the offset of the current instruction in the code
segment. It is used for calculating the address of instruction as shown above.

10

. . Microprocessor
1.3.2 Execution Unit (EU) Araglitecture

Exezcution unit performs all the ALU operations. The execution unit of 8086 is of 16
bits. It also contains the control unit, which instructs bus interface unit about which

memory location to access, and what to do with the data. Control unit also performs
decoding and execution of the instructions. The EU consists of the following:

(a) Control Circuitry, Instruction Decoder and ALU

The 8086 control unit is primarily micro-programmed control. In addition it has an
instruction decoder, which translates an instruction into sequence of micro operations.
The ALU performs the required operations under the control of CU which issues the
necessary timing and control sequences.

(b) Registers

All CPUs have a defined number of opera’ ional registers. 8086 has several general
purpose and special purpose registers. We will discuss these registers in the following
sections.

1.4 REGISTER SET OF 8086

The 8086 registers have five groups of registers. These groupings are done on the
basis of the main functions of the registers. These groups are:

General Purpose Register .

8086 microprocessors have four general purpose registers namely, AX, BX, CX, DX.
All these registers are 16 — bit registers. However, each register can be used as two
general-purpose byte registers also. These byte registers are named AH and AL for
AX, BH and BL for BX, CH and CL for CX, and DH and DL for DX. The H in
register name represents higher byte while L represents lower byte of the 16 bits
registers. These registers are primarily used for general computation purposes.
However, in certain instruction executions they acquire a special meaning.

AX register is also known as accumulator. Some of the instructions like divide, rotate,
shift etc. require one of the operands to be available in the accumulator. Thus, in such
nstructions, the value of AX should be suitably set prior to the instruction.

BX register is mainly used as a base register. It contains the starting base location of a
memory region within a data segment.

CX register is a defined counter. It is used in loop instruction to store loop counter.
DX register is used to contain 1/O port address for I/O instruction.

You will experience their usage in various assembly programs discussed later.
Segment Registers

Segment Registers are used for calculating the physical address of the instruction or
memory. Segment registers cannot be used as byte registers.

Pointer and Index Registers

The 8086 microprocessor has three pointer and index registers. Each of these registers
is of 16 bit and cannot be accessed byte wise. These are Base Pointer (BP), Source
Index (S1) and Destination Index (DI). Although they can be used as general purpose
registers, their main objective is to contain indexes. BP is used in stack segment, SI in
Data segment and DI in Extra Data segment.

11

Assembly Language
Programming

12

Special Registers

A Last in First Out (LIFQ) stack is a data structure used for parameter passing, return
address storage etc. 8086 stack is 64K bytes. Base of the stack is pointed to by the
stack segment (SS) register while the offset or top of the stack is stored in Stack
Pointer (SP) register. Please note that although the memory in 8086 has byte
addresses, stack is a word stack, which is any push operation will occupy two bytes.

Flags Register

A ﬂag' represents a condition code that is O or 1. Thus, it can be represented using a
flip- flop. 8086 employs a 16-bit flag register contalmng nine flags. The following
table shows the flags of 8086.

Flags |

Meaning

L ‘ Comments 1

| Conditional F lags represent result of last arithmetic or logical instruction executed.
Conditional flags are set by some condition generated as a result of the last
| mathematical or logical instruction executed. The conditional flags are:

CF Carry Flag 1 if there is a carry bit

PF ‘Parity Flag 1 on éven parity O on odd parity

AF Auxiliary Flag LﬁSet (1) if auxiliary carry for BCD occurs

ZF Zero Flag Set if result is equal to zero

SF Sign Flag Indicates the sign of the result (1 for minus, 0
for plus)

OF Overflow Flag | sety whenever there is an overflow of the result

Control flags, which are set or reset deliberately to control the operations of the
execution unit, The control flags of 8086 are as follows:

TF Single step trap Used for single stepping through the program
flag

IF Interrupt Enable | Used to allow/inhibit the interruption of the
flag program '

DF String direction | Used with string instruction.

flag

" Check Your Progress 1

1. What is the purpose of the queue in the bus interface unit of 8086
MiCroprocessors?

..

2. Find out the physical addresses for the following segment register: offset

(a) SS:SP = 0100h:0020h

(b) DS:BX =

0200h:0100h .

(c) CS:IP = 4200h:0123h

3. State True or False.
(a) BX register is used as an index register in a data segment. D
(b) CX-register is assumed to work like a counter. ' D

(c) The Source Index (SI) and Destination Index(DI) registc?s. in 8086 can also be
used as general registers.

(d) Trag Flag (TR)is a conditional flag. D

1.5 INSTRUCTION SET OF $086

Afier discussing the basic organization of the 8086 micro-processor, let us now
provide an overview of various instructions available in the 8086 microprocessor. The
instruction set is presented in the tabular form. An assembly language instruction in
the 8086 includes the following:

Label: Op-code Operand(s); Comment

For example, to add the content of AL and BL registers to get the result in AL, we use
the following assembly instruction.

NEXT: ADD AL,BL ; AL € AL + BL

Please note that NEXT is the label field. It is giving an identity to the statement. It is
an optional field, and is used when an instruction is to be executed again through a
L.OOP or GO TO. ADD is symbolic op-code, for addition operation. AL and BL are
the two operands of the instructions. Please note that the number of operands is
diependent upon the instructions. 8086 instructions can have zero, one or two
operands. An operand in 8086 can be:

A register

A memory location

A constant called literal

A label. ‘

W

We will discuss the addressing modes of these operands in section 1.6,

Comments in 8086 assembly start with a semicolon, and end with a new line. A long
comment can be extended to more than one line by putting a semicolon at the
beginning of each line. Comments are purely optional, however recommended as they
provide program documentation. In the next few sections we look at the instruction set
of the 8086 microprocessor. These instructions are grouped according to their -
functionality.

i.5.1 Data Transfer Instructions

These instructions are used to transfer data from a source operand to a destination
operand. The source operand in most of the cases remains unchanged. The operand
can be a literal, a memory location, a register, or even an I/O port address, as the case
may be. Let us discuss these instructions with the following table:

MNEMONIC DESCRIPTION EXAMPLE

MOV des, src des € src; Both the operands should | MOV CX,037AH
be byte or word. sre operand can be ; CX register is initialized
register, memory location or an ; with immediate value
immediate operand des can be ; 037AH.
register or memory operand.
Restriction: Both source and | MOV AX,BX
destination cannot be memory ; AXEBX
operands at the same time. ‘

Microprocessor
Architecture

13

Assembly Language
Programming

PUSH operand | Pushes the operand into a stack. PUSH BX
SP €« SP-2; ; decrement stack pointer
value [TOS] € operand. ; by; two, and copy BX to
Initialise stack segment register, and , stack.
the stack pointer properly before ; decrement stack pointer
using this instruction. No flags are ; by two, and copy
effected by this instruction. The ; BX to stack
operand can be a general purpose
register, a segment register, or a
memory location. Please note itis a
word stack and memory address is a
byte address, thus, you decrement by
2. Also you decrement as SP is
initialised to maximum offset and
condition of stackful is a zero offset
(so it is a reversed stack)

POP des POP a word from stack. The des can | POP AX
be a general-purpose register, a ; Copy content for top
segment register (except for CS ; of stack to AX.
register), or a memory location. Steps
are:
des € value [TOS]
SP € SP+2

XCHG des, src Used to exchange bytes or words of XCHG DX,AX
src and des. It requires at least one of | ; Exchange word in DX
the operands to be a register operand. | ; with word in AX

The other can be a register or memory
operand. Thus, the instruction cannot
exchange two memory locations
directly. Both the operands should be
either byte {ype or word type. The
segment registers cannot be used as
operands for this instruction.

XLAT

Translate a byte in AL using a table
stored in the memory. The instruction
replaces the AL register with a byte
from the lookup table. This
instruction is a complex instruction.

Example is available in
Unit 3.

IN accumulator,
port address

It transfers a byte or word from
specified port to accurnulator register.
In case an 8-bit port is supplied as an
operand then the data byte read from
that part will be transferred to AL
register. If a 16-bit port is read then
the AX will get 16 bit word that was
read. The port address can be an
immediate.operand, or contained in

DX register. This instruction does not
change any flags.

IN AL,028h
; read a byte from port
; 028h to AL register

OUT port
address,
Accumulator

It transfers a byte or word from
accumulator register to specified port.
This instruction is used to output on
devices like the monitor or the printer.

LEA register,
source

Load “effective address” (refer to this
term in block 2, Unit 1 in addressing
modes) of operand into specified 16 —
bit-register. Since, an address is an

offset in a segment and maximum can

LEA BX, PRICES

; Assume PRICES is
; an array in the data
; segment. The

; instruction loads the

be of 16 bits, therefore, the register ; offset of the first byte of
can only be a 16-bit register. LEA ; PRICES directly into
instruction does not change any flags. | ; the BX register.
The instruction is very useful for
array processing.
LDS des-reg It loads data segment register and LDS SI, DATA
| othér specified register by using ; DS€-content of memory
consecutive memory locations. ; location DATA &
:DATA + 1
; SI € content of
; memory locations
:DATA+2 & DATA + _
;3
LES des-reg It loads ES register and other
specified register by using
consecutive memory locations. This
instruction is used exactly like the
LDS except in this case ES & other
specified registers are initialized.
LAHF Copies the lower byte of flag register
to AH. The instruction does not
change any flags and has no operands.
SAHF Copies the value of AH register to
low byte of flag register. This
instruction is just the opposite of .
LAHEF instruction. This instruction
has no operands.
{ PUSHF Pushes flag register to top of stack.
SP & SP - 2; stack [SP] € Flag
Register.
i POPF Pops the stack top to Flag register.
| Flag register € stack [SP]
S SP € SP +2
1.5.2 Arithmetic Instructions
MNEMONIC DESCRIPTION EXAMPLE
ADD Adds byte to byte, or word to word. ADD AL,74H
The source may be an immediate ; Add the number 74H to
operand, a register or a memory ; AL register, and store the
location. The rules for operands are ; result back in AL
the same as that of MOV instruction. | ADD DX,BX
To add a byte to a word, first copy the | ; Add the contents of DX to
byte to a word location, then fill up ; BX and store the result in ;
the upper byte of the word with zeros. | DX, BX remains
This instruction effects the following | ; unaffected.
flags: AF, CF, OF, PF, SF, ZF.
ADC des, src Add byte + byte + carry flag, or word
+ word + carry flag. It adds the two
operands with the carry flag. Rest all
the details are the same as that of
ADD instruction.
INC des It increments specified byte or word | INC BX
operand by one. The operand can be a | ; Add 1 to the contents of
register or a memory location. It can | ; BX register
effect AF, SF, ZF, PF, and OF flags. | INC BL
It does not affect the carry flag, that _J,‘;‘Add 1 to the contents of
is, if you increment a byte operand | ; BL register

Microprocessor
Architecture

15

Assembly Language
Programming

14

having OFFH, then it will result in 0
value in register and no carry flag.

given number, this changes the sign
of a number. However, please note
that if you apply this instruction on
operand having value —128 (byte
operand) or 32768 (word operand) it
will result in overflow condition. The

AAA ASCII adjusts after addition. The data | ADD AL,BL
entered from the terminal is usually in | ; AL=00110101, ASCII 05
ASCII format. In ASCII 0-9 are ; BL=00111001, ASCII 09
represented by codes 30-39. This ; after addition
instruction allows you to add the ; AL =01101110, that is,
ASCII codes instead of first ; 6EH- incorrect
converting them to decimal digit ; temporary result
using masking of upper nibble. AAA | AAA
instruction is then used to ensure that | ; AL = 00000100.
the result is the correct unpacked ; Unpacked BCD for 04
BCD. ; carry = 1, indicates
’ , the result is 14
DAA Decimal (BCD) adjust after addition. | ; AL =0101 1001 (59
.| This is used to make sure that the ; BCD)
result of adding two packed BCD ; BL=0011 0101 (35
numbers is adjusted to be a correct ; BCD)
BCD number. DAA only works on ADD AL, BL
AL register. ; AL = 10001101 or
; 8Eh (incorrect BCD)
DAA
; AL = 1001 0100
; =94 BCD : Correct.
| SUB des, src Subtract byte from byte, or word from | SUB AX, 3427h
word. (des € des - src). For ; Subtract 3427h from AX
subtraction the carry flag .unctions as | ; register, and store the
a borrow flag, that is, if the number in | ; result back in AX
the source is greater than the number
in the destination, the borrow flag is
to set 1, Other details are equivalent
to that of the ADD instruction.
SBB des, src Subtract operands involving previous | SBB AL,CH
carry if any. The instruction is similar | ; subtract the contents
to SUB, except that it allows us to ; of CH and CF from AL
subtract two multibyte numbers, ; and store the result
because any borrow produced by ; back in AL.
subtracting less-significant byte can
be included in the result using this
instruction.
DEC src Decrement specified byte or specified | DEC BP
word by one. Rules regarding the ; Decrement the contents
operands and the flags that are ; of BP
affected are same as INC instruction. | ; register by one.
Please note that if the contents of the
operand is equal to zero then after
decrementing the contents it becomes
OFFH or OFFFFH, as the case may be.
_The catry flag in this case is not
affected.
NEG sr¢ Negate - creates 2's complement ofa | NEG AL

; Replace the number in
; AL with it’s 2’s
; complement

overflow (OF) flag will be set to

indicate that operation could not be
done. -

CMP des,src

| Please note that two ASCII numbers
| cannot be multiplied dlrectly To

multiply first convert the ASCII

It compares two specified byte CMP CX,BX
operands or two specified word ; Compare the CX register
operands. The source and destination | ; with the BX register
operands can be an immediate ; In the example above, the ;
number, a register or a memory CF, ZF, and the SF flags
location. But, both the operands ; will be set as follows.
cannot be memory locations at the X=BX 01 0; result of
same time. The comparison is done ; subtraction is zero
simply by internally subtracting the ; CX>BX 0 0 0; no borrow ;
source operand from the destination - | required therefore, CF=0
operand. The value of source and the | ; CX<BX 101
destination, operands is not changed, | ;subtraction require
but the flags are set t2 indicate the ; berrow, so CF=1
, results of the compatson.
AAS ASCII adjust after suotraction. This [; AL =00110101 ASCII 5
: instruction is similar to AAA (ASCII | ; BL'=0011 1001 ASCII 9
adjust after addition) instruction. The | SUB AL,BL
AAS instruction works on the AL 5 (5-9) result:
register only. It updates the AF and | ; AL=11111100=-41in
CF flags, but the OF, PF, SF and the . '}52’s complement, CF = 1
ZF flags remam undeﬁned AAS ;result: 7~
; AL = 0000 0100 =
; BCD 04,
L | e .| ; CF =1 borrow needed.
DAS Decimal adjust after subtraction. This |-; AL=86 BCD
‘| instruction is used after subtracting: | ; BH=57 BCD
‘two packed BCD nurnbers to make SUB AL,BH
‘sure the result is the packed BCD. ; AL=2Fh, CF =0
{ DAS only works on the AL register. | DAS-
The DAS mstrucuon,updates the AF, |; Results in AL =29 BCD
"CF, SF, PF and ZF flags. The
overﬂow (OF) is undefined after
o DAS.
MUL src | This is an unsigned multiplication MOV AX,05; AX=05 ﬂ
o | instruction that multiplies two bytes | MOV CX,02; CX=02
| to produce a word operand or two MUL CX
| words to produce a double word such | ; results in DX=0
| as. - ; AX=0Ah
AX € AL* src (byte multiplication. '
" | stc is also byte)
DX or AX € AX * src (word
multiplication is two word).
This instruction assumes one of the
operand in AL (byte) or AX (word):
| the src operand can be register or
| memory operand. If the most
. Vs1gn1ﬁcanty word of the result is zero-
| then, the CF and the OF flags are both
| .made zero. The AF, SF, PF, ZF flags’
| are'not defined after the MUL
_instruction. If you want to multiply a
.| byte with a word, then first convert
. byte to a word operand. j
AAM ~ASCII adjust. after multiplication. ; AL=0000 0101 unpacked

' BCD 05

BH=0000 1001 unpacked ;
BCD 09

1

Mitroprocesson
Architechere::: . -

17

Assembly Language
Programming

18

number to numeric digits by masking
off.the upper nibble of each byte. This
leaves unpacked BCD in the register.
AAM instruction is used to adjust the
product to two unpacked BCD digits
in AX after the multiplication has
been performed. AAM defined by the
instruction while the CF, OF and the
AF flags are left undefined.

MUL BH

; AX=AL * BH=002Dh
AAM

; AX=00000100 00000101 ;
BCD 45 : Correct result

DIV src This instruction divides unsigned ; AX =37D7h = 14295
word by byte, or unsigned double ; decimal
word by word. For dividing a word by | ; BH = 97h = 151 decimal
" a byte, the word is stored in AX DIV BH
‘register, divisor the src operand and ; AX / BH quotient
| the result is obtained in AH : ; AL = SEh = 94
remainder AL: quotient. It can be ; decimal RernainderAH = ;
represented as: 65h =101
AH: Remainder ; decimal
AL: Quotient - } € AXfsre
Similarly for double word division by
a word we have
DX: Remainder . :
AX: Quotient } € DX:AX/ ste
A division by zero result in run time
error. The divisor src can be either in
: a register or a memory operand.
IDIV Divide signed word by byte or signed | ; AL=11001010 =-26h =
_ double word by word. For this ; -~ 38 decimal
B division the operand requirement, the | ; CH = 00000011 =+ 3h=
general format of the instruction etc. | ; 3 decimal ~
are all same as the DIV instruction. ; According to the operand
IDIV instruction leaves all flags ; rules to divide by a byte
undefined. ; the number should be
; present in a word register, ;
i.e. AX. So, first convert
h ; the operand in AL to word
; operand. This can be done ;
by sign extending the
; AL register, '
; this makes AX
; 11111111 11001010.
; (Sign extension can also
; be done with the help of
; an instruction, discussed
; later)
IDIV CH
; AX/CH
;AL =11110100 =-0CH ;
=-12 Decimal :
;AH=11111110=-02H =, -
02 Decimal
; Although the quotient is
; actually closer to -13
; (712.66667) than -12, but
; 8086 truncates the result
‘ ; to give -12.
AAD ASCII adjust after division. The BCD | ; AX= 0607 unpacked
; BCD for 6

numbers are first unpacked, by

masking off the upper nibble of each

;and 7 CH = 09h

byte. Then ADD instruction is used to | AAD

cqnvert the unpacked BCD digits in

; adjust to binary before

AL and AH registers to adjust them to | ; division AX=0043 =

equivalent binary prior to division.
Such division will result in unpacked

; 043h = 67 Decimal
DIV CH

BCD quotient and remainder. The PF, | ; Divide AX by unpacked

SF, ZF flags are updated, while the

AF, CF, and the OF flags are left
undefined.

; BCD in CH
; AL = 07 unpacked BCD

; AH = 04 unpacked BCD

sign bit of lower word. This
instruction is an extension of the

previous instruction. This instruction

results in sign extension of AX
register t0 DX:AX double word.

;PF=SF=Z7ZF=0

CBW Fill upper-byte or word with copies | ; AL = 10011011 =-155

‘ of sign bit of lower bit. This is called | ; decimal AH = 00000000 .
sign extension of bite to word. This | CBW ;convert signed
instruction does not change any ; byte in AL to signed
flags. This operation is done with AL | ; word in AX = 11111111
register in the result being stored in | ; 10011011 = -155 decimal

1 CWD Fill upper word or double word with | ; DX : 0000 0000 G000 0000

; AX : 1111 0000 0101 0001
CWD

; 1111 0000 0101 0001

y DXCAX=1111 1111 1111 1111

1.5.3 Bit Manipulation Instructions

These instructions are used at the bit level. These instructions can be used for testing a

zero bit, set or reset a bit and to shift bits across registers. Let us look into some such

basic instructions.

| MNEMONIC DESCRIPTION EXAMPLE
NOT des Complements each bit to produce | ; BX=0011 10100001 0000
f 1’s complement of the specified | NOT BX

byte or word operand. The ;BX=11000101 1110 1111
operand can be a register or a
memory operand. :

AND des, src 1 Bitwise AND of two byte or word | ; BH = 0011 1010 before
operands. The result is des € des | AND BH, OFh
AND src. The source canbe an | ; BH = 0000 1010
immediate operand a register, or a | ; after the AND operation
memory operand. The destination
-can be a register or a memory
operand. Both operands cannot be
memory operands at the same
time. The CF and the OF flags are
both zero after the AND =~
operation. PF, SF and ZF area

: updated, Afis left undefined. .

~ OR des, src | OR each corresponding bits of the | ; BH = 0011 1010 before
byte or word operands. The other | OR BH, OFh
operands rules are same as AND. |; BH=0011 1111 after
des € des OR src :

XOR des,src XOR each corresponding bitina | ; BX =00111101 01101001
byte or word operands rules are ; CX =00000000 11111111 ~

| two same as ANDand OR. | XOR BX,CX
des € Des +src . : BX=0011110110010110
; Please note, that the bits in
; the lower byte are inverted.

Microprocesser
Architecture

f@:;;':f;fﬁ:'g‘g""ge TEST des, src ++ 1|, AND the operands to update
flags, but-donot change operands
_| - value. It can be used'to set and -
.. ..7. . otest conditions.CF and OF are
. ¢ 14 . both set to zero, PF, SFand ZF -
are all updated, AF is left -

e / ;,.;un:deﬁned aﬁerthe operatlon -

{3 AL=0101 0001

TEST AL, 80h.

; This instruction would

;5 test if the MSB bit of the AL
;3 register 1s zero or one. After
;-the TEST .operation ZF will
; be setto 1 if the MSB of AL

20

; is zero.

SHL/SAL des;
goumt .

Shlﬁ bits of W‘Ord or. byte leﬂ by .
count. It puts zero(s) in LSB(s).

| MSB is shifted into the carry flag.
‘| If more than ope bits are shifted
-{.lefl; then the CE gets the most

) recently moved MSB. If the

- .. | number of bits desired tobe.
*. | shifted is only 1, then-the -
i--| immediate number. 1 canbe .

written-as one of the operands.

| However, if the number of bits -
1] désired to be shifted is more than |

one, then the second operand is -

SAL BX, 01
IFCE=0
; BX = 1000 1001

sresult ; CF =1

; BX = 0001 0010

moved into CF

‘ ... putin CLregister. B R
SHR des, count | Tt shifts bifs of a byte or word to | SHR BX,01
| register put zeroin MSB. LSBis |-, ifCF=0

; BX = 1000 1001

- { yresult. CF = |

- BX = 0100 0100 ‘
MOV-CE, 02 -

{ SHR BX, CL

; with same BX, the.
; result would be

1, BX = 0010 0100

I SAR des, count

Shift bits of word or byte right,: ..
:-1:but it retains the value of hew -
MSB to that of old MSB. This is - -
| also called arithmetic shift
: 1| operation, as it does not change .
"t the MSB, which is sxgn bitaofa

7 znumber

-+ AL=0001 1101 = +29
-, decimal, CF=0
SAR AL, 01 -
“t.3 AL=0000 1110 = +14
“;decimal, CF=1.

s OF=PE=SF=ZF=0
BH*11110011—-13
; decimal .

SARBH,OI v
~{3BH=11111001 = -7

+:; decimal, CF =1

 OF=ZF=0,PF=SF=1

; ROL des, count

Rotate bits of word or byteleft, . -

‘| MSB is transferred to LSB'and :

also to CF. Diagrammatically,:it

| can be represented asy SR &
HER ¢ s

c#"—

(+ | The operation is called rotate as it.

 |scitculates bits. The operands-can® »f- . .-«
.1 | be register or memory operand. -

I
i

; CF

ROR des,'coﬁm "

‘Rotate!bits of word or byte right,

LSB is transferred to MSB'and * |; BX =0011:1011 0171 G101 '] ~Mieropristessor

also to CF. The same can be ROR BX, 1 Architecture
- | represented dlagrammatlcally as | ;results; CF=1, o
follows:” 7 7 L ‘ BX=1001 1101 1011 10‘10
CF - | MSBiip LSB

RCL des, count | Rotate bits of words or byte left,
o | MSB to CF and CF to LSB. The
operation is circular and involves
| carry flag in rotation. .. .-

crg— [msp¥— 13| |

RCR d’es,‘-(’:ount- '| Rotate bits of word or byte right, . |-
S LSB t0:CF and-CF to MSB. This -
e »mstrucnon rotates Ieft e

- CR -—) MSB——---) LSB'[: |-

. | e
B TR KR

I S

B Check Your Progress 2
1. Point out the errof/ e%rors in the following 8086 assembly instruction (if any)?

i PUSHF' AX

MOV AX, BX

XCHG MEM_ WORDI MEM_WORD?2
AAA-BL, CL:-

DIV AX, cH

oo o s»ﬂ' ‘

: 2. State 'Tnie or Farse in the context of 8086 assembly language. T!| F

" (a)' LEA and' MOV instruction serve the same purpose. The only difference
- between the two 1s the type of operands they take,

oo

(b) NEG mstructlon produces i's complement ofa number

() MUL mstmctlon assumes one of the operands to be present in the AL or
AX regxster v

]

‘ :(d) TEST mstructlon performs an OR Operatlon, but does not change the value
vt of operands ‘ ;

{(e) Suppose AL comams 01 10 0101 and CF is set, then instructions ROL
' and RCL AL w111 produce the same results.

,,/,.»

D g

21

Asiembly Language
Programming

1.5.4 Program Execution Transfer Instructions

These instructions are the ones that causes change in the sequence of execution of
instruction. This change can be through a condition or sometimes may be
unconditional. The conditions are represented by flags. For example, an instruction
may be jump to an address if zero flag is set, that is the last ALU operation has
resulted in zero value. These instructions are often used after a compare instruction, or
some arithmetic instructions that are used to set the flags, for example, ADD or SUB.

certain count,

LOOP is also a conditional branch instruction and is taken till loop variable is below a

Please note that a "/" is used to separate two mnemonics which represent the same

instruction,
MNEMONIC DESCRIPTION EXAMPLE
CALLprocl - This function results in a CALL procl
‘ procedure/ function call. The CALL proc2

return address is saved on the The new instruction

stack. There are two basic types | address is determined by

of CALLS. NEAR or Intra- name declaration procl is

Segment calls: if the call is made | a near procedure, thus,

to a procedure in the same only IP is involved. proc2

segment as the calling program. | involves new CS: IP pair.

FAR or Inter segment call: if the | On call to procl -

call is made to a procedure in the | stack & IP

segment, other than the calling IP € address offset of

program. The saved return procl

address for NEAR procedure on call to proc2

N call is just the IP. For FAR Stack [top] € CS

Procedure call IP and CS are - Stack [top] € IP

saved as return address. CS & code segment of
proc2 o
IP € address offset of
proc2
Here we assume that procl
is defined within the same
segment as the calling
procedure, while proc2 is
defined in another
segment. As far as the
calling program is -

' concerned, both the
procedures have been
called in the same manner.
But while declaring these
procedures, we declare
procl as NEAR procedure
and proc2 as FAR
procedure, as follows:
procl PROC NEAR
proc2 PROC FAR

A procedure can also be called LEA BX, procl

indirectly, by first initializing ; initialize BX with the

some 16-bit register, or some ; offset of the procedure

other memory location with the | ; procl

new addresses as follows. CALL BX _

: ; CALL procl indirectly
; using BX register

RET number It returns the control from RET 6

procedure to calling program.
Every CALL should be a RET
mstruction. A RET instruction,
causes return from NEAR or
FAR procedure call. For return
from near procedure the values
of the instruction pointer is
restored from stack. While for
far procedure the CS:IP pair get
is restored. RET instruction can
also be followed by a number.

; In this case, 8086

; increments the stack

; pointer by this number

; after popping off the IP
; (for new) or IP and CS

; registers (for far) from

; the stack. This cancels

; the local parameters, or
; temporary parameters

; created by the

; programmer. RET

; instruction does not

; affect any flags.

JMP Label

Unconditionally go to specified
address and get next instruction
from the label specified. The
label assigns the instruction to
which jump has to take place
within the program, or it could
be a register that has been
initialised with the offset value.
JMP can be a NEAR JMP or a
FAR jump, just like CALL.

JMP CONTINUE .

; CONTINUE is the label
; given to the instruction
; where the control needs
; to be transferred.

JMP BX

; initialize BX with the

; offset of the instruction,
; where the control needs
; to be transferred.

Conditional Jump

All the conditional jumps follow
some conditional statement, or
any instruction that affects the
flag.

2

‘MOV CX, 05

MOV BX, 04

CMP CX, BX

; this instruction will set

; various flags like the ZF,
; and the CF. '

JE LABELI

; conditional jump can

; now be applied, which

; checks for the ZF, and if
; it is set implying CX =

; BX, it makes

; a jump to LABELL1,

; otherwise the control

; simply falls

; through to next

; instruction

; in the above example as
; CX is not equal to BX

; the jump will not take

; place and the next

; instruction to conditional
; jump instruction will be
; executed. However, if

; JNE (Jump if not equal

; to)or JA (Jump if
above), ; or JAE (Jump
above or

; equal) jump instructions
; if applied instead of JE,

; will cause the conditional
; jump to occur.

All the conditional jump instructions which are given below

are self explanatory.

[JA/INBE

Jump if above / Jump if not
below nor equal

Microprocessor
Architecture

Assembly Language
* Programming

R

JAE/JNB

Jump if above or equal/ Jump if

not below

TB/INAE

-+ ["Jump if below/ Jump if not
| above nor equal

TBEINA

Jump if below or equal/ Jump if B
.| not above .

JC

TNz

o Jump ifcarry flag set _ :
| Jump if equal / Jump if zero ﬂag o
1 18 set : L

INC

| Jump if not carry

JNE/JINZ

Jump if not equal / Jump 1f Zero

flag is not set

JO

| Jump if overflow flag is set

JNO

Jump if overflow flag is not set

“TP/IPE

Jump if parity flag is sét/ Jump-
if parity even: '

INP/IPO

‘Jump if not panty/Jump 1f .
+| parity odd

JG/INLE -

Jump if greater than / Jump if
| not less than norequal - =~

JA/INL

Jump if above / Jump 1f not less
than

JL/NGE

| Jump if leés than / Jump if not -

eater than nor equat

i

“JLE/ING

- Jump if less than or equal to /
| Jump if not greater than

JS

" Jump if sign flag is set

JNS

Jump if sign flag is not set

"LOOP label

| This is a looping instruction of

assembly. The number of times
the looping is required is placed

I m CX register. Each iteration

decrements CX register by one

impllcltly, and the Zero Flag is

checked to check whether to

| loop again. If the zero flag is not
[sét (CX is zero) greater than the
‘control goes back to the

specified label in the instruction,
or else the control falls through
to the next instruction. The
LOOP instruction expects the

label destination at offset of ~

128 to +127 from the loop
instruction offset.

: Let us assume we want to
; add 07 to AL register,

; three times.

MOV CX,03

; count of iterations

Li; ADD AL,07

LOOP L1 ; loop back to L,
; unti] CX

; becomes equal to zero

; Loop affects no flags.

LOOPE/ LOOFZ

label

| Loop through a sequence of

instructions while zero flag = 1
and'CX is not equal to zero.
There are two ways to exit out of

| the loop, firstly, when the count

| in the CX register becomes equal
to zero, or when the quantities

’| that are being compared become
‘unequal.

Let us assume we have an
array of 20 bytes. We want |.
to see if all the elements of
that array are equal to
OFFh or not. To scan 20
elements of the array, we
loop 20 times. And we
come out of the loop,
when either the count of

- iterations has become
'| equal to 20, or in other
words CX register has

decremented to zero,
which means all the
elements of the array are
equal to OFFh, or an
element in the array is
found which is not equal
to OFFh. In this case, the
CX register may still be
greater than zero, when the
control comes out. This
can be coded as follows:
(Please note here that you
might not understand
everything at this place,
that is because you are still
not familiar with the
various addressing modes.
Just concentrate on the
LOOPE instruction):

MOV BX, OFFSET ARRAY
; Point BX at the start

; of the ARRAY

DEC BX ; put number of
; array elements in CX
MOV CX,10

L1: INC BX ; point to

; next element in array

| CMP [BX],0FFh

; compare array element

; with OFFh

LOOPE L1

; When the control comes
; out of the loop, it has

; either scanned all the

; elements and found them
; to be all equal to OFFh, or
; it is pointing to tie first

; non-OFFh, element in the
; array.

LOOPNE/LOOPNZ
label

This instruction causes Loop
through a sequence of
instructions while zero flag =0
and CX is not equal to zero. This
instruction is just the opposite of
the previous instruction in its
functionality.

JCXZ l1abel

Jump to specified address if CX

=0. This instruction will cause a -

jump, if the value of CX register
is zero. Otherwise it will proceed
with the next instruction in
sequence.

This instruction is useful
when you want to check
whether CX is zero even
prior to entering into a
loop. Please note that
LOOP instruction executes
the loop at least once
before decrementing and
checking the value of CX
register, Thus, CX=0 will
execute the loop once and
decrement the CX register,

Microprocessor
Architecture

25

" Assembly Language
Programming

making it OFFFFh, which
is non zero: This will
cause FFFFh times .
execution of loop. To
avoid such type of
conditions you can
proceed as follows:
JCXZ SKIP _LOOP

; if CX is already 0, skip
; loop

L1: SUB [BX],07h

INC BX

LOOP LI

; loop until CX=0

SKIP LOOP:.......

In addition to these instructions, there are other interrupt handling instructions also,
which too transfer the control of the program to some specified location. We will
discuss these instructions in later units.

1.5.5 String Instructions

These are a very strong set of 8086 instructions as these instructions process strings, in-
a compact manner, thus, reducing the size of the program by a considerable amount.
“String” in assembly is just a sequentiaily stored bytes or words. A string often
consists of ASCII character codes. A subscript B following the instruction indicates
that the string of bytes is to be acted upon, while “W” indicates that it is the string of
words that is being acted upon.

MNEMONIC DESCRIPTION EXAMPLES
REP This is an instruction prefix. It REP MOVSB STR1, STR2
causes repetition of the following | The above example copies
instruction till CX becomes zero. - | byte by byte conterts. The
REP. It is not an instruction, but it | CX register is initialized to
is an instruction prefix that causes | contain the length of source
| the CX register to be decremented. | string REP repeats the
This prefix causes the string operation MOVSB that
instruction to be repeated, until CX | copies the source string byte
becomes equal to zero. to destination byte. This
operation is repeated until
the CX register becomes
. equal to zero.
REPE/REPZ It repeats the instruction following
~until CX =0 or ZF is not equal to
one. REPE/REPZ may be used
with the compare string instruction
or the scan string instruction.
REPE causes the string instruction
to be repeated, till compared bytes
or wards are equal, and CX is not
yet decremented to zero.
REPNE/REPNZ It repeats instruction following it
until CX =0 or ZF is equal to I.
This comparison here is just
inverse of REPE except for CX,
which is checked to be equal to
zero. : ’ :
MOVS/MOVSB/ | It causes moving of byte or word Assumes both data and extra
MOVSW segment start at address 1000

from one string to another. . This

instruction assumes that:
e Source string is in Data
segment.
o Destination string is in extra
_data segment
e Sl stores offset of source
string in extra segment
e DI stores offset of destination
string is in data segment
e CX contains the count of
“operation
A single byte transfer requires;
e One byte transfer from source
string to destiiation
o Increment of ¢ I and DI to
next byte
¢ Decrement count register that
is CX register

in the memory. Source string
starts at offset 20h and the

. destination string starts at

offset 30h. Length of the
source string is 10 bytes. To
copy the source string to the
destination string, proceed as

- follows:

MOV AX,1000h .
MOV DS§,AX

; initialize data segment and
MOV ES,AX

; extra segment

MOV SI,20h

MOV DL30h

; load offset of start of

; source string to SI

; Load offset of start of
; destination string to DI
MOV CX,10

; load length of string to CX
; as counter

REP MOVSB

; Decrement CX and

; MOVSB until

; CX =0

; after move SI will be one
; greater than offset of last
; byte in source string, DI
; will be one greater than

; offset of last destination
; string. CX will be equal

; to zero.

CMPS/CMPSB/ It compares two string bytes or MOV CX,10
| CMPSW words. The source string and the | MOV SI,OFFSET SRC_STR
destination strings should be ; offset of source
present in data segment and the ; string in SI
extra segment respectively. Sl and | MOV DI, OFFSET DES_STR
DI are used as in the previous ; offset of destination
instruction. CX is used if more ; string in DI
than one bytes or words are to be | REPE CMPSB
compared, however for such a case | ; Repeat the comparison of
appropriate repeating prefix like ; string bytes until
REP, PEPE etc. need to be used. ; end of string or until
; compared bytes are not .
; equal.
SCAS/SCASB/ It scans a string. Compare a string .| MOV AL, 0Dh
SCASW - byte with byte in AL or a string ; Byte to be scanned
word with a word in AX. The ; for in AL .

instruction does not change the
operands in AL (AX) or the
operand in the string. The string to
be scanned must be present in the
extra segment, and the offset of the
string must be contained in the DI
register. You can use CX if
operation is to be repeated using
REP prefixes.

MOV DI,OFFSET DES_STR

MOV CX,10

REPNE SCAS DES_STR

; Compare byte inDES_STR
;-with byte in AL register

; Scanning is repeated while ;
the bytes are not equal and ;
it is not end of string. If a

.; carriage return ODh is

; found, ZF = DI will point ;

Microprocessor
Architecture

&

27

Assembly Language
Programming

28

at the next byte after the

; carriage return. If a

; carriage return is not

; found then, ZF = 0 and

; CX=0.SCASB or

; SCASW can be used to

; explicitly state whether

; the byte comparison or the ;
word comparison is

; required. '

LODS/LODSB/ It loads string byte into AL or a MOV SLOFFSET SRC_STR

LODSW string word into AX. The string LODS SRC_STR
byte is assumed to be pointed to by | ; LODSB or LODSW can
SI register. After the load, the SI ; be used to indicate to the
pointer is automatically adjusted to | ; assembler, explicitly,
point to the next byte or word as ; whether it is the byte that
the case may be. This instruction ; is required to be loaded’or
does not affect any flag. ; the word.

STOS/STOSB/ It stores byte from AL or word MOVDI,OFFSET DES_STR

STOSW from AX into the string present in | STOSB DES_STR

the extra segment with offset given
by DI. After the copy, DI is
automatically adjusted to point to
the next byte or word as per the
instruction. No flags are affected.

1.5.6 Processor Control Instructions

The objectives of these instructions are to control the processor. This raises two

questions:

How much control of processor is actually allowed?

" How can you control processor, as this is the job of control unit?

Well, 8086 only allows you to control certain control flags that causes the processing

attached through L.OCK instruction for buses etc.

" in a certain direction, processor synchronization if more than one processors are

Note: Please note that these instructions may not be very clear to you right now. Thus,
some of these instructions have been discussed in more detail in later units. You must
refer to further readings for more details on these instructions.

MNEMONIC

DESCRIPTION

EXAMPLE

STC

It sets carry flagto 1.

CLC

It clears the carry flag to 0.

CMC

It complements the state of the
carry flag fromOto 1 or 1 to O as’
the case may be.

CMC,; Invert the carry flag

STD

It sets the direction flag to 1. The

-string instruction moves either

forward (increment SI, DI) or
backward (decrement SI, DI}
based on this flag value. STD
instruction does not affect any
other flag. The set direction flag
causes strings to move from right
to left.

CLD

This is opposite to STD, the string

CLD

operation occurs in the reverse
direction.’

; Clear the direction flag

; so that the string pointers
; auto-increment.

MOV AX,1000h

MOV DS, AX

; Initialize data segment

; and extra segment
MOV ES, AX

MOV S, 20h

; Load offset of start of

; source string to SI

MOV DIL30h

; Load offset of start of

; destination string to DI
MOV CX,10

; Load length of string to
; CX as counter

REP MOVSB

; Decrement CX and

; increment

; SI and DI to point to next
; byte, then MOVSB until
;CX=0

There are many process control instructions other than these; you may please refer to
further reading for such instructions. These instructions include instructions for setting
and closing interrupt flag, halting the computer, LOCK (locking the bus), NOP etc.

1.6 ADDRESSING MODES

P

The basic set of operands in 8086 may reside in register, memory and immediate

operand. How can these operands be accessed through various addressing modes? The
answer to the question above is given in the following sub-section. Large number of
addressing modes help in addressing complex data structures with ease. Some specific
Terms and registers roles for addressing:

Base register (BX, BP): These registers are used for pointing to base of an array, stack
etc. ‘
Index register (SI, DI): These registers are used as index registers in data and/or extra

segments.

Displacement: It represents offset from the segment address.

Addressing modes of 8086

_Mode Description Example
Direct Effective address is the
displacement of memory
variable.
Register Indirect Effective address is the [BX] K
contents of a register. ISI]
[D1]
[BP]
Based Effective address is the sum LIST[BX]
of a base register and a (OFFSET LIST + BX)
: displacement. [BP+1]
Indexed Effective address is the sum | LIST[SI)
of an index register and a [LIST +DI1]
[displacement. [DI +2]
| Based Indexed [BX +SI]

Microprocessor
Architecture

29

Assembly Language
~ Programming

Effective address is the sum | [BX][DI)

of a base and an index [BP+ DI]
register.

Based Indexed with
displacement

Effective address is the sum [BX +SI+2]
of a base register, an index
register, and a displacement.

1.6.1 Register Addressing Mode
Operand can be a 16-bit register:

Addressing Mode Description Example
AX, BX, CX, DX, SI, In general, the register MOV AL,CH

DI,BP,IP,CS,DS,ES,SS

Or it may be AH, AL, BH, BL, | efficient because registers are

CH, CL, DH, DL

addressing mode is the most MOV AX,CX

within the CPU and do not
Tequire memory access.

1.6.2 Immediate Addressing Mode

An immediate operand can be a constant expression, such as a number, a character, or
an arithmetic expression. The only constraint is that the assembler must be able to
determine the value of an immediate operand at assembly time. The value is directly
inserted into the machine instruction.

MOV AL,05
Mode Description Example
Immediate Please note in the last MOV AL,10
examples the expression (2 | MOV ALA
+ 3)/5, is evaluated at MOV AX,'AB'
assembly time. MOV AX, 64000
MOV AL, (2 +3)/5

1.6.3 Direct Addressing Mode

A direct operand refers to the contents of memory at an address implied by the name
of the variable.

Mode Description | , Example
DIRECT The direct operands are also MOV COUNT, CL

called as relocatable operands | ; move CL to COUNT (a °
as they represent the offset of | ; byte variable)

a label from the beginning ofa | MOV AL,COUNT
segment. On reloadinga ; move COUNT to AL
program even in a different JMP LABELLI
segment will not cause change | ; jump to LABEL1

in the offset that is why we MOV AX,DS:5

- call them relocatable. Please ; segment register and
noie that a variable is ; offset
considered in Data segment MOV BX,CSEG:2Ch
(DS) and code label in code ; segment name and offset

segment (SS) by default. Thus, | MOV AX,ES:COUNT
in the example, COUNT, by ; segment register and
; variable.

default will be assumed to be’
in data segment, while LABEL
1, will be assiimed to be in
code segment. If we specify,
as a direct operand then the
address is non-relocatable.
Please note the value of

; The offsets of these

; variables are calculated
; with respect to the

; segment name (register)
; specified in the

; instruction,

segment-register will be

known only at the run time.

1.6.4 Indirect Addressing Mode

In indirect addressing modes, operands'use registers to point to locations in memory.
So it is actually a register indirect addressing mode. This is a useful mode for handling

' strings/ arrays etc. For this mode two types of registers are used. These are:

e Base register BX, BP
e Index register SI, DI

BX contain offset/ pointer in Data Segment
BP contains offset/ pointer in Stack segment.
-SI contains offset/pointer in Data segment.
DI contains offset /pointer in extra data segment.

There are five different types of indirect addressing modes:

1. Register indirect

2. Based indirect

3. Indexed indirect

4. Based indexed '
5. Based indexed with displacement. .

Mode Description Example
Register Indirect operands are MOV BX, OFFSET ARRAY
indirect particularly powerful when ; point to start of array

processing list of arrays, MOV AL,[BX]

because a base or an index ; get first element

register may be modified at INC BX

runtime. ‘ ; point to next
MOV DL,[{BX]

; get second element

The brackets around BX signify
that we are referring to the contents
of memory location, using the
address stored in BX.

"| In the following example, three
bytes in an array are added together:
MOV SI,OFFSET ARRAY

; address of first byte -

MOV AL,[SI] ~

; move the first byte to AL

INC SI

; point to next byte

ADD AL,[ST]

; add second byte

INC SI

; point to the third byte

ADD AL,[SI]

; add the third byte

Micropracessor
Architecture

31

e g

Assembly Language
Programming

()

[

Based Indirect
and Indexed
Indirect

Based and indirect addressing
modes are used in the same
manner. The contents of a
register are added to a
displacement to generate an
effective address. The register
must be one of the following:
S1, DI, BX or BP. If the
registers used for
displacement are base
registers, BX or BP, it is said
to be base addressing or else
it is called indexed
addressing. A displacement is
either a number or a labei
whose offset is known at
assembly time. The notation
may take several equivalent
forms. IfBX, Slor Dl is
used, the effective address is
usually an offset from the DS
register; BP on the other
hand, usually contains an
offset from the S8 register.

; Register added to an offset
MOV DX, ARRAY[BX]
MOV DX,[DI + ARRAY]
MOV DX,[ARRAY + SI]

; Register added to a constant
MOV AX,[BP + 2]

MOV DL,[DI- 2] ; DI + (-2)
MOV DX,2[SI]

Mode

Description

Example

Based Indexed

In this type of ad iressing the
operand’s effective address is
formed by combining a base
register with an index register.

MOV AL,[BP] [S]]
MOV DX,[BX ; SI]
ADD CX,[DI] [BX}.

; combined, so the

; following would be
; incorrect:

MOV DL,[BP + BX]

MOV AX,[SI + DIJ

; Two base registers or two
; index registers cannot be

; error : two basc registers

, error : two index registers

Based Indexed with

Displacement

address is formed by

index register, and a
displacement.

The operand’s effective

combining a base register, an

MOV AX, [BX + SI -+
ARRAY]
ADD DL,[BX + SI + 3]

SI]

combined, so the
following would be

MOV DX, ARRA Y[BX][SI]

SUB CX, ARRAY[BP +

Two base registers or two
index registers cannot be

incorrect:
MOV AX,[BP + BX + 2]
MOV DX, ARRAY[SI +
o)i}

B Check Your Progress 3

State True or False. T| F

1. CALL instruction sh'<‘)u1d be followed by a RET instruction.

2. Conditional jump instructions require one of the flags to be tested. I:]

3. REP is an instruction preﬁx that causes execution of an instruction until CX value
become 0.

4. In the instruction MOV BX, DX register addressing mode has been used. l___l

§. In the instruction MOV BX ES COUNTER the second operand is a direct
operand.

5. In the instruction ADD CX, [DI] |BX] the second operand is a based index -
operand, whose effective address is obtained by adding the contents of DI and BX

registers. D

7. The instruction ADD AX,ARRAY [BP + SI] is incorrect. D

1.7 SUMMARY

In this unit, we have studied one of the most popular series of microprocessors, viz.,
Intel 8086. It serves as a base to all its successors, 8088, 80186, 80286, 80486, and
Pentium. The successors of 8086 can be directly run on any successors. Therefore,
though, 8086 has become obsolete from the market point of view, it is still needed to
understand advanced microprocessors.

To summarize the features of 8086, we can say 8086 has:

- a 16-bit data bus

- a 20-bit address bus

- CPU is divided into Bus Interface Unit and Execution Unit
- 6-byte instruction prefetch queue

- segmented memory

- 4 general purpose registers (each of 16 bits)

- instruction pointer and a stack pointer

- set of index registers

- powerful instructien set

- powerful addressing modes

- designed for multiprocessor environment

- available in versions of 5Mhz and 8Mhz clock speed.

You can refer to further readings for obtaining more detalls on INTEL and Motorola
series of mlcrOprocessors '

1.8 SOLUTIONS/ANSWERS

Check Your Progress 1

1. It improves execution efficiency by storing the next instruction in the Tegister
queue. .

2. a) 0100 x 10h (- 16 in decimal) + 0020h
= (1000h + 0020h
=01020h

b) 0200h x 10h +0100h
= 02000h + 0100h
= 02100h

¢) 4200h x 10h + 0123

Microprocessor
Architecture

33

Assembly Language
Programming

. = 42000h +0123h
=42123h

3. a)False b) True c) True d) False

Check Your Progress 2

1. (a) PUSHF instructions do not take any operand.
(b) No error.
(c) XCHG instruction cannot have two memory operands
. (d) AAA instruction performs ASCII adjust after addition. It is used after an
ASCII Add. It does not have any operands.
(e) IDIV assumes one operand in AX so only second operand is needed to be
specified. :

2. (a) False
(b) False
(c) True
(d) False
(e) False

Check Your Progress 3

False
True
True
True.
True
True
False

N U RN~

34

