60

UNIT 3 PRINCIPLES OF LOGIC CIRCUITS I

Structure Page Nos.
3.0 Introduction 60
3.1 Objectives 60
3.2 Logic Gates 60
3.3 Logic Circuits 62
3.4 Combinational Circuits 63

3.4.1 Canonical and Standard Forms
3.4.2 Minimization of Gates

3.5 Design of Combinational Circuits 72
3.6 Examples of Logic Combinational Circuits 73

3.6.1 Adders

3.6.2 Decoders

3.6.3 Multiplexer

3.6.4 Encoder

3.6.5 Programmable Logic Array

3.6.6 Read Only Memory ROM
3.7 Summary 82
3.8 Solutions/ Answers 82

3.0 INTRODUCTION

In the previous units, we have discussed the basic configuration of computer system
von Neumann architecture, data representation and simple instruction execution -
paradigm. But ‘How does a computer actually perform computations?’. Now, we will
attempt to find answer of this basic query. In this unit, you will be exposed to some
of the basic components that form the most essential parts of a computer. You will
come across terms like logic gates, binary adders, logic circuits and combinational
circuits etc. These circuits are the backbone of any computer system and knowing
them is quite essential. The characteristics of integrated digital circuits are also
discussed in this unit.

3.1 OBJECTIVES

Afier going through this unit you will be able to :

define logic gates;

describe the significance of Boolean algebra in digital circuit design;

describe the necessity of minimizing the number of gates in design;

describe how basic mathematical operations, viz. addition and subtraction, are
performed by computer; and

. define and describe some of the useful circuits of a computer system such as
multiplexer, decoders, ROM etc. '

3.2 LOGIC GATES

A logic gate is an electronic circuit which produces a typical output signal depending
on its input signal. The output signal of a gate is a simple Boolean operation of its
input signal. Gates are the basic logic elements that produce signals of binary 1 or 0

We can represent any Booiean function in the form of gates.

In general we can represent each gate through a distinct graphic symbol and its
operation can be given by nmieans of aigebraic expression. To represent the input-

output relationship of binary variables in each gate, truth tables are used. The Principles of Logic

notations and truth -tables for different logic gates are given in Figure 3.1. Circuits I
Name Graphic Symbol IAlgebraic function Truth Table
NOT | A—>o—F F=A ALF

or
0 1
F=A 1 0
w [s=D—r |7 F
B or
F= AB 0
0
0
1
' A
R |5 :D— F F=A+B A BLE
k 0 0 0
0 1 1
1 0 1
1 1 1
—_ A B F
s+ ool
‘ 0 1 1
1 0 1
1 1 0
NOR | A :DQ_ F . A B| F
B F=A+B —
0 0]
0 | 0
| 0 0
. 1 1

Exclusive- . , " F=AB+AB 0

~ OR) I >—— F -

B F=A ® B A B F

(XOR) 0 0| 0
0 1 1

I 0 1

I I 0

Exclusive-

NOR A jj > A BI|F
F =

(XNOR) | B F=AQ®B 0 0ol1

0 110

1 010

1 111

Figure 3.1: Logic Cates

The truth table of NAND and NOR can be made from NOT (A AND B) and NOT

(A OR B) respectively. Exclusive OR (XOR) is a special gate whose output is one
only if the two inputs are not equal. The inverse of exclusive OR, called as XNOR
gate, can be a comparator which will produce a 1 output if two inputs are equal.

The digital circuits use only one or two types of gates for simplicity in fabrication
purposes. Therefore, one must think in terms of functionally complete set of gates.
What does functionally complete set imply? A set of gates by which any Boolean
function can be implemented is called a functionally complete set. The functionally
 complete sets are: [AND, NOT], [NOR], [NAND], [OR, NOT].

61

62

Introduction to Digital

Circuits 3.3 LOGIC CIRCUITS
A Boolean function can be implemented into a logic circuit using the basic gates:-
AND ,OR & N(zT. Consider, for example, the Boolean function: -
F(ABC) = AB+C
The relationship between this function and its binary variables A, B, C can be
represented in a truth table as shown in figure 3.2(a) and figure 3.2(b) shows the
corresponding logic circuit.
Inputs | Output
A B C F
0 0 0 0
0 0 1 A -
0 .o 1 A *{>C ‘ AB F =AB+C
0 1 | 1 ’——‘ '
1 0 0 0 B
1 0 | 1
1 1o 0
1 1|1 1 ¢

(a) Truth Table

(b) Logic Cixcuit
A
Figure 3.2 : Truth table & logic diagram forF= A B+ C

Thus, in a logic circuit, the variables coming on the left hand side of boolean
expression are inputs to circuit and the variable function coming on the right hand side
of expression is taken as output.

Here, there is one important point to note i.e. there is only one way to represent the
boolean expression in a truth table but can be expressed in variety of logic circuits.
How? [try to find the answer]

Check Your Progress 1

1) What are the logic gates and which gates are called as Universal gates.

N

2) Simplify the Boolean function: F = {[—A- + ﬁ] + LA + EJ}

3) Draw the logic diagrém of the above function.

Principles of Logic

4) Draw the logic diagram of the simplified function. Cirenits I

5) Show implementation of AND, NOT and OR Operations using NAND gates.

3.4 COMBINATIONAL CIRCUIT

Combinational circuits are interconnected circuits of gates according to certain rules
to produce an output depending on its input value. A well-formed combinational
circuit should not have feedback loops. A combinational circuit can be represented as
a network of gates and, therefore, can be expressed by a truth table or a Boolean
expression.

The output of the combinational circuit is related to its input by a combinational
function, which is independent of time. Therefore, for an ideal combinational circuit
the output should change instantaneously according to changes in input. But in actual
case there is a slight delay. The delay is normally proportional to depth or number of
levels i.e. the maximum numbers of gates on any path from input to output. For
example, the depth of the combinational circuit in figure 3.3 is 2.

O

Y
_D—F= XY+XY

X —

Y —

Figure 3.3 : A two level AND-OR combinational circuit

The basic design issue related to combinational circuits is: the Minimization of
number of gates. The normal circuit constraints for combinational circuit design are :

. The depth of the circuit should not exceed a specific level,
. Number of input lines to a gate (fan in) and to how many gates its output can be
fed (fan out) are constraint by the circuit power constraints.

3.4.1 Canonical and Standard Forms

An algebric expression can exist in two forms :

i) Sumof Products (SOP) e.g.(A. B)+(A.B)
ii) Product of Sums (POS) eg.(A+B).(A+B)

If a product term of SOP expression contains every variable of that function either in
true or complement form then it is defined as a Minterm or Standard Product. This
minterm will be true only for one combination of input values of the variables. For
example, in the SOP expression

F(A.B.C)=(A.B.C)+ (A.B.C)+(A.B)

We have three product terms namely A.B.C, . A .B.Cand AB. But only first two of
them qualifies to be a minterm, as the third one does not contain variable C or its

Introduction to Digital

Circuits

64

complement. In addition, the term A.B.C will be one only if A=1,B=1land.C=1,
for any other combination of values of A, B, C the minterm A.B.C will have 0 value.
Similarly, the minterm. A B. C will have value 1 only if A =1, B=1andC=1 (It
implies A=0, B=0 and C=1) for any other combination of values the minterm will
have a zero value.

Similar type of term used in POS form is called Maxterm or Standard Sum.
Maxterm is a term of POS expression, which contains all the variables of the function
in true or complemented form. For example, F (A,B,C)=(A+B+ (). (A+B+C)
has two maxterms. A maxterm has a value 0, for only one combination of input
values.

The maxterm A + B+C will has 0 value'only for A=0,B=0and C=0 for all other
combination of values of A, B, C it will have a value 1.

Figure 3.4 indicates the 2° different minterms and maxterms where n is number of
variables.

.
Variable’s Value Minterm Maxterm

a b c Term Representation Term Representation

0 0 0 abe mo a+btc ‘Mo

0] 0 | 1 abc m, a+b+c M,

0 1 0 abc m, a+b+c M,

0 | 1 1 abc m; a+b+c M,

1 0 0 abc my a+btc M,

1 0 1 a bc ms a+btc Ms;

1 1 0 abc mg atb+c M,

1| 1 1 abe m; a+b+c M;

Figure 3.4: Maxterms and Minterms for 3 variables

We can represent any Boolean function alegebricahy directly in minterm and maxterm
form from the truth table. For minterms, consider each combination of variables that
produces a I output in function and then taking OR of all those terms. For example,
the function F in figure 3.5 is represented in minterm form by ORing the terms where

the outputFis | i.e. a bc, abc a bec, abc &abc.

1 a b c F —1
o Jo o 0 m, |
0o Jo 1 1 m,

0 1 0 1 m,

0 1 1 |1 m,

1 0 0 o my

1 0 1 0 ms

1 1 0 1 ms

1 1 1 1 m;

Figure 3.5: Function of three variables

Thus, F(abc) =a bc+a be +abcrabe +abe

=m +m+m, +
m +mtm +m +m

= Z (1,2,3,6,7)

The complement of function F can be obtained by ORing of the minterms I(': rinciples of Logic
corresponding to the combinations that produce a 0 output in function. Thus, ircuits 1

F(a,b,c) = abc +abc +abc

If we take the complement of F , we get the function F in maxterm form.

F(ab,c)= (F)= (abc+abc+abc)=(abe).(abe).(a be)
(a+b+c)(a+tb+c)(a+b+c) [DeMorgan’s law] -

Mg .M, M,

IT (0, 4, 5)

I

The product symbol I1 stands for ANDing the maxterms.

Here, you will appreciate the fact that the terms which were missing in minterm form
are present in maxterm form. Thus if any form is known then the other form can be
directly formed.

The Boolean function expressed as a sum of minterms or product of maxterms has the
property that each and every literal of the function should be present in each and every
term in either normal or complemented form.

3.4.2 Minimization of Gates

The simplification of Boolean expression is very useful for combinational circuit
design. The following three methods are used for this:

e Algebraic Simplification
. Karnaugh Maps
. Quine McCluskey Method

Algebraic Simplification

We have already discussed algebraic simplification of logic circuit. An algebraic

expression can exist in POS or SOP forms. Let us examine the following example to

understand how it helps in implementing any logic circuit.

Example : Consider the function F (a,b,c) =a bc +a b ¢+ a b. The logic circuit
implementation of this function is shown in fig 3.6(a).

a
a ! a

(=2

>

[\ebe
_J

_ 65
(a) F=abc+abc+2b

Introduction to Digital
Circuits

66

a
a ab

)

B S — T
F=ab +3@b

(b) F= abc+abc+ab

Figure 3.6 : Two logic diagrams for same boolean expression

The expression F can be simplified using boolean algebra.
F(a,b,c) = abc+abc+ab
= ab(c+c)+ab [as c+ ¢ =1]
= ab+ab
= adpb

The logic diagram of the simplified expression is drawn in fig 3.6 (b) using NOT, OR
and AND gates (the same operation can be performed by using a single XOR gate).
Thus the number of gates are reduced to 5 gates (2 inverters, 2 AND gates & 1 OR)
instead of 7 gates. (3 inverters, 3 AND & | OR gate).

The algebraic function can appear in many different forms although a process of
simplification exists yet it is cumbersome because of absence of routes which tell
what rule to apply next. The Karnaugh map is a simple direct approach of
simplification of logic expressions. '

Karnaugh Maps

Karnaugh maps are a convenient way of representing and simplifying Boolean
function of 2 to 6 variables. The stepwise procedure for Karnaugh map is.

Step 1: Create a simple map depending on the number of variables in the function.
- Figure 3.7(a) shows the map of two, three and four variables. A map of 2

variables contains 4 value position or elements, while for 3 variables it has
2* =8 elements. Similarly for 4 variables it is 2* =16 elements and so on.
Special care is taken to represent variables in the map. The value of only
one variable changes in two adjacent columns or rows. The advantage of
having change in one variable is that two adjacent cloumns or rows
represent a true or complement form of a single variable.

For example, in figure 3.7(a) the columns which have positive A are
adjacent and so are the column fqr' A . Please note the adjacency of the
corners. The right most column can be considered to be adjacent to the first
column since they differ only by one variable and are adjacent. Similarly
the top most and bottom most rows are adjacent.

Decimal A B B
A
0 0 0 |
0 1
1] 1 0
2 1 0) 2003
3 | 1
[Deumd\ A B C
. B B
0 0 0 0 B(C
i 0 o : AN T
2 0 1 0 0 o} 1 ‘ 32N =
0 i I - JA
4 [0 0 { 4 \5 LN
5 1 0 ! J)
6 I ! 0 D e e
7 1 1 i C C C

Three Variables

Principles of Logic-.

Decimal A B) C D Circuits I

1 o | o | o |V w ¢
o,

2 0 0 I 0 AN 0 or 110

3 0 ; b 5 {00 oT 1T 3] 2]y _

4 A

5 0 ! 0 I o | 4 S| 7 ¢®

6 0 ! ! 0 B { B E

7 0 1 1 1 H A

8 1 0 0 0 sdol 8 9 [©

9 1 0 0 1 By!

10 ! 0 ! 0 —_—

11 1 0 1 1 D D D

12 1 1. 0 0

13 | 1 0 1 Four Variables

4 | |] 0

15 | |] |

(a) Maps for 2, 3 and 4 variables

v P D 9o o1 110
ABN\ o0 o1 U 10 ‘|00 o1 11 10 AB\ |

w U ffBoo = k.) - H’—_\L“_‘—"’)/_ B
W [CD) o |~ ol) Iy
n) , C n N
10 m ‘O—ﬂ (‘W o _"1__/ "“‘_—‘wk_

Type of adjacencies for two squares Type of adjacencies for 4 squares Type of adjacencies for 8 squares

(b) Possible adjacencies
Figure 3.7: Maps and their adjacencies
Please note:

1) Decimal equivalents of column are given for help in understanding where the
position of the respective set lies. It is not the value filled in the square. A
square can contain one or nothing.

2) The 00,01, 11 etc written on the top implies the value of the respective
variables.

3) Wherever the value of a variable is 0 it is said to represent its compliment form.

4) The value of only one variable changes when we move from one row to the next
row or one column to the next column.

Step 2: The next step in Karnaugh map is to map the truth table into the map. The
mapping is done by putting a 1 in the respective square belonging to the 1
value in the truth table. This mapped map is used to arrive at simplified
Boolean expression which then can be used for drawing up the optimal
logical circuit. Step 2 will be more clear in the example.

Step3: Now, create simple algebraic expression from the K-Map. These
expressions are created by using adjacency if we have two adjacent 1’s then
the expression for those can be simplified together since they differ only in
1 variable. Similarly, we search for the adjacent pairs of 4, 8 and so on. A 1
can appear in more than one adjacent pairs. We should search for octets
first then quadrets and then for doublets. The following example will clarify
the step 3.

67

Introduction to Digital
Circuits

68

Example: Now, let us see how to use K map simplification for finding the
Boolean function for the cases whose truth table is given in figure 3.8(a)
and 3.8(B) shows the K-Map for this.

Decimal A B C D Output F

0 0 0 0 0 1

1 0 0 0 1 |

2 0 0 1 0 1

3 0 0 1 1 0

4 0 1 0 0 0

5 0 1 0 1 0

6 0 1 1 0 [

7 0 1 1 1 0 OrF=2.(0,1,2,6,8,9, 10)
8 1 0 0 0 I

9 1 ol o | 1 I

10 1 0 1 0 1

11 1 0 1 1 0

12 1 1 0 0 0
13 1 1 0 | 0

14 1 1 1 0 0

15 | 1 1 1 0

(a) Truth table

"w o It 10
AB y | {
o] G T

TN T

P 3
(b) Karnaugh’s ma

Figure 3.8 : Truth table & K-Map of Function F=)_ (0, 1,2,6,8,9, 10)
Let us see what the pairs which can be considered as adjacent in the Karnaugh’s here.
The pairs are:

1) The four corners
2) The four I’s as in top and bottom in column 00 & 01
3) Thetwo 1’s in the top two rows of last column.

The corners can be represented by the expressions :

1) Four corners

= (ABCD+ABCD)+ (ABCD+ABCD)
= ABD (C+C)+A B D (C+C) [asC+C =1]
~ABD+ABD
0 =BD(A+A)
= BD

2) The four I’s in column 00 and 01 gives the following terms g fli_':c"}t’s"l’ of Logic
ireuy

Ol

D+ABCD)+(ABCD+A BC D)
+D)+ABC (D+D)
BC

Il
w|>l>l';[
alal
+ o~
> Ol

3) The two 1’s in the last columns
ABCD + ABCD

ACD (B+B)

ACD

I

I

Thus, the Boolean expression derived from this K-Map is

F = BD+BC+ACD

[Note . This expression can be directly obtained from the K-Map after making
quadrets and doublets. Try to find how ?]

The expressions so obtained through K-Maps are in the forms of the sum of the
product form i.e. it is expressed as the sum of the products of the variables. This
expression can be expressed in product of sum form, but for this special method are
required to be used [already discussed in last section].

Let us see how we can modify K-Map simplification to obtain POS form. Suppose in
the previous example instead of using 1 we combined the adjacent 0 squares then we
will obtain the inverse function and on taking transform of this function we will get
the POS form.

Another important aspect about this simple method of digital circuit design is
DONOT care conditions. These conditions further simplify the algebraic function.
These conditions imply that it does not matter whether the output produced is 0 or 1
for the specific input. These conditions can occur when the combination of the
number of inputs are more than needed. For example, calculation through BCD where
4 bits are used to represent a decimal digit implies we can represent 2* = 16 digits but
since we have only 10 decimal digits therefore 6 of those input combination values do
not matter and are a candidate for DONOT care condition.

For the purpose of exercises you can do the exercise from the reference [1], [2],[3]
given in Block introduction.

What will happen if we have more than 4— 6 variables? As the numbers of variables
increases K-Maps become more and more cumbersome as the numbers of possible
combinations of inputs keep on increasing.

Quine McKluskey Method

A tabular method was suggested to deal with the increasing number of variables
known as Quine McKluskey Method. This method is suitable for programming and
hence provides a tool for automating design in the form of minimizing Boolean
expression. ,

The basic principle behind the Quine McKluskey Method is to remove the terms,
which are redundant and can be obtained by other terms.

To understand Quine - Mc Kluskey method, lets us see following example:-

Given, F(A,B,C,D,E) = ABCDE+ABCDE+ABCDE+ ABCDE +

ABCDE+ABCDE+ABCDE+ABCDE
' 69

Introduction to Digital
Circuits

Step I: The terms of the function are placed in table as follows:

Term/var A | B C D E Checked/Unchecked
ABCDE 1 1 1 1 1 v
ABCDE ! 1 1 0 v
AB CDE 1 0 0 1 1 v
ABCDE 0 1 1 1 0 v

| A BCDE 1 0 1 1 0 Y

ABCDE | 0 | o | o | 1 [v
ABCDE | ! o | o | o | 1 v
ABCDE| 0 | 0 0 0 0 v

Step I1 :

Forming the pairs which differ in only one variable, also put check (v)

against the terms selected and finding resultant terms as follows :-

ABCDE
ABCD E

—

ABCE

> >
UU

w)
t

wl® wWim
OO0 Aalae)

o —
}>

)
m

> > 1%

ABCDE

In the new terms, again find all the terms which differ only in one variable and put a

check (1) across those terms i.e.

BCDE }———+V§EE
BCDE
Step II1: Now, constructing final table as :
ABCDE | ABCDE | ABCDE | ABCDE | ABCD | ABCDE | ABCDE|ABCDE
ABCE | m
ACDE E3| =
BCE 3] = ® =

Thus all columns have mark ‘X’. Thus the final expression is:

F (A,B,C,D,E) =

The process can be summarised as follows:-

ABCE+A CDE +BCE

Step I

Step 1

Principles of Logic

: Build a table in which each term of the expression is represented in row Cireuits 1

(Expression should be in SOP form). The terms can be represented in the
0 (Complemented) or 1 (normal) form.

I: Check all the terms that differ in only one variable and then combine the
pairs by removing the variable that differs in those terms. Thus a new
table is formed.

This process is repeated, if necessary, in the new table also until all
uncommon terms are left i.e. no matches left in table.

Step 11T :

a)

b)

Finally, a two dimensional table is formed all terms which are not
eliminated in the table form rows and all original terms form the column.
At each intersection of row and column where row term is subset of column
term, a ‘X’ is placed.

Step IV :

a)

Put a square around each ‘X’ which is alone in column

b) Putacircle around each ‘X’ in any row which contains a squared

c)

‘X,

If every column has a squared or circled ‘X’ then the process is complete
and the corresponding minimal expression is formed by all row terms which
have marked Xs.

Check Your Progress 2

1)

3)

Prepare the truth table for the following boolean expressions:
(i) A BC+ABC
(i) (A+B).(A+B)

Simplify the following functions using algebraic simplification procedures and
draw the logic diagram for the simplified function.

i) F=((AB+B)

...
..
..
D R R I L R I R T R N L L LR R
R R R R T R R T I R N

..

Simplify the following boolean functions in SOP and POS forms by means of
K-Maps.

Also draw the logic diagram.

F(AB,C,D)= ¥ (0,2,8,9,10,11,14,15)

...
..
..

71

Introduction to Digital

Circuits 3.5 DESIGN OF COMBINATIONAL CIRCUITS

The digital circuits, which we use now-a-days, are constructed with NAND or NOR
gates instead of AND-OR-NOT gates. NAND & NOR gates are called Universal
Gates as we can implement any digital system with these gates. To prove this point
we need to only show that the basic gates : AND , OR & NOT, can be implemented
with either only NAND or with only NOR gate. This is shown in figure 3.9 below:

>1

NOT (F=A) A—:D—-

OR F=(A+B) A

AND (F=AB) § w

(NOT)
Figure 3.9 : Basic Logic Operations with NAND and NOR gates

Any Boolean expression can be implemented with NAND gates, by expressing the
function in sum of product form.

Example: Consider the function F (A, B, C)= X (1,2,3,4,5,7). Firstly bring it in
SOP form. Thus, from the K-Map shown in figuwre 3.10(a), we find

F(ABC)=C+AB+AB = (c +AB+ AﬁJ

:[a_(x—m.(rgaj

F
BC > B
BC BC C BC A
- B
A 1ol ! _
A
B
A t ! | 1 —
7 c
(a) K-Map (b) Logic circuit using NAND only

Figure 3.10: K-Map & Logic circuit for functien F (A, B, C) = £ (1,2,3.4.5,7).

72

Similarly, any Boolean expression can be implemented with only NOR gate by Principles of Logic
expressing in POS form. Let us take same example, F (A, B, C) =X (1,2,3,4,5,7). Circuits [

As discussed in section 3.4.1, the above function F can be represented in POS form as

F(A,B, C)=T1(0,6)

=(K+§+E).(A+B+E)=(K+B+C)(A.+B+E)

=(K+§+Ej+(A+B+Ej

ORI
>l
+
w
+
)

aNw >

i (A+B +C)

Figure 3.11: Logic circuit for function F (A, B, C) =X (1,2,3,4,5,7) using NOR gates

After discussing so much about the design let us discuss some important
combinational circuits. We will not go into the details of their design in this unit.

3.6 EXAMPLES OF COMBINATIONAL
CIRCUITS

The design of combinational circuits can be demonstrated with some basic
combinational circuits like adders, decoders, multiplexers etc. Let us discuss each of
these examples briefly.

3.6.1 Adders

Adders play one of the most important roles in binary arithmetic. In fact fixed point
addition is often used as a simple measure to express processor’s speed. Addition and
subtraction circuit can be used as the basis for implementation of multiplication and
division. (we are not giving details of these, you can find it in Suggested Reading).

Thus, considerable efforts have been put in designing of high speed addition and
substraction circuits. It is considered to be an important task since the time of
Babbage. Number codes are also responsible for adding to the complexity of
arithmetic circuit. The 2’s complement notation is one of the most widely used codes
for fixed-point binary numbers because of ease of performing addition and subtraction
through it.

A combinational circuit which performs addition of two bits is called a half adder,
while the combinational circuit which performs arithmetic addition of three bits (the
third bit is the previous carry bit) is called a full adder.

In half adder the inputs are:

73

Introduction to Digital
Circuits

74

The augend lets say ‘x’ and addend ‘y’ bits.

The outputs are sum ‘S’ and carry ‘C’ bits.

The logical relationship between these are given by the truth table as shown in figure

3.12 (a). Carry ‘C’ can be obtained on applying AND gate on ‘x” & ‘y” inputs,

therefore , C = x.y, while S can be found from the Karnaugh Map as shown in figure

3.12(b). The corresponding logic diagram is shown in figure 3.12(c).

Thus, the sum and carry equations of half- adder are:

S =xy +txy
C=xy
S
Inputs Carry Sum y
X 0 1
X y C S
0 0 0 0 0 1
0 1 0 1
] 0 0] 1 1
1 1 1 0
(a) Truth table (b) K-Map for ‘S’
X
y
(c) Logic Diagram
Figure 3.12: Half — Adder implementation
Let us take the full adder. For this another variable carry from previous bit addition is
added let us call it “p’. The truth table and K-Map for this is shown in figure 3.13.
S yp
X 0 o 1
0 1
Inputs Carry Sum |
1 1
X y p C S
0 0 0 0 0 (b) K-Map for ‘S’
0 0 e 0 1
0 | 0 0 1 cyp
0 1 1 1 0 o ¢ 1 10
1 0 0 0] X
1 0 1 1 0 0 I T
1 | 0 1 0
1 1 1] 1 ! .
(a) Truth table @ @
(¢) K- Maps for ‘C’

= |

P y
*— 1
=

P s P

rp——
v |
p

(d) Logic diagram

Figure 3.13 : Full-adder implementation

Three adjacencies marked a,b,c in K-Map of ‘C’ are
a) Xyp*xyp

xp(y+y)

i

b) Xyp +xyp
- xy
©) Xyp+xyp
= yp
Thus, C=xp+xy+yp

In case of K-Map for ‘S’, there are no adjacencies. Therefore,

S=Xyp+Xyp+xyp+xyp

Principles of Logic
Circuits 1

X —3|

y —>

A full
adder
(bit)

—> S

(e) Block Diagram

Till now we have discussed about addition of bit only but what will happen if we are
actually adding two numbers. A number in computer can be 4 byte i.e. 32 bit long or
even more. Even for these cases the basic unit is the full adder. Let us see (for
example) how can we construct an adder which adds two 4 bit numbers. Let us
assume that the numbers are: x; x; X; Xo and y; Y2 ¥ Yo; here x; and y; (i=0 to 3)

represent a bit. The 4-bit adder is shown in figure 3.14.

,T\; Sz S] SO
C, Full p, C Full p, C Full p 11
€< Adder — Adder - Adder] Aliilzier

(bit) (bit) (bit) (bit)

X Y, X, Y, X, Y,

Figure 3.14 : 4-bit Adder

X(l

y()

75

76

Intreduction to Digital

Circuits

The overall sum is represented by S; S; S, S, and over all carry is C; from the 4th bit
adder. The main feature of this adder is that carry of each lower bit is fed to the next
higher bit addition stage, it implies that addition of the next higher bit has to wait for
the previous stage addition. This is called ripple carry adder. The ripple carry becomes
time consuming when we are going for addition of say 32 bit. Here the most

significant bit i.e. the 320d bits has to wait till the addition of first 31 bits is complete.

Therefore, a high-speed adder, which generates input carry bit of any stage directly
from the input to previous stages was developed. These are called carry lookahead
adders. In this adder the carry for various stages can be generated directly by the logic
expressions such as:

Co = XoYo
Ch =xiy+xi+tynCo

The complexity of the look ahead carry bit increases with higher bits. But in turn it
produces the addition in a very small time. The carry look ahead becomes increasingly
complicated with increasing numbers of bits. Therefore, carry look ahead adders are
normally implemented for adding chunks of 4 to 8 bits and the carry is rippled to next
chunk of 4 to 8 bits carry look ahead circuit.

Adder- subtractor

The subtraction operation on binary numbers can be achieved by sequence of addition
operations only i.e. to perform subtraction, A-B, we can find 2’s complement of B.
This can be calculated using 1’s complemented & then adding 1 to it. Thus, a common
circuit can perform the addition and subtraction operation. A 4-bit adder- subtraction
circuit is shown in figure 3.15, which is formed by using XOR gate with every full
adder. The XOR gate with output 0 is for detecting overflow.

B, A, B, A, B A J B A
1 ! 0 0
Mode
=0 for add
= for
subtract
d Cin
Full Adder fe- Full Adder Full Adder (¢ Full Adder
Carry out Cin Cin Cin
Overflow v ;’ l I ‘[
condition 3 5, S, S

Figure 3.15: 4-bit adder-subtractor circuit

The control input ‘x’ controls the operations i.e. if x =0 then the circuit behaves like
an adder and if x =1 then circuit behaves like a subtractor. The operation is
summarized as :

a) Whenx =0, c=0, the output of all XOR gates will be the same as the
corresponding input B; where i = 0 to 3. Thus, A; & B; are added through full
adders giving Sum, S; & carry C;

Principles of Logic

b) Whenx = 1, the output of all XOR gates will be complement of input Bj where i Cireutrs 1

=0 to 3, to which carry Co=1 is added. Thus, the circuit finds A plus 2’s
complement of B, that is equal to A—B.

3.6.2 Decoders
Decoder converts one type of coded information to another form. A decoder has ‘n

inputs and an enable line (a sort of selection line) and 2" output lines. Let us see an
example of 3 x 8 decoder which decodes a 3 bit information and there is only one
output line which gets the value 1 or in other words,.out of 2* =8 lines only 1 output
line is selected. Thus, depending on selected output line the information of the 3 bits

can be recognized or decoded. ;
I() IUI l2
- A > 000

(¢) Truth Table

Figure 3.16 : 3X 8 decoder

Please make sure while constructing the logic diagram wherever the values in the truth
table are appearing as zero in input and one in output the input should be fed in
compliemented form e.g. the first 4 entries of truth table contains 0 in Iy position and
hence [, value 0 is passed through a NOT gate and fed to AND gates ‘a’, ‘b’, ‘¢’ and
‘d’ which implies that these gates will be activated/selected only if I is 0. If I, value is
1 then none of the top 4 AND gates can be activated. Similar type of logic is valid for
1,. Please note the output line selected is named 000 or 010 or 111 etc. The output
value of only one of the lines will be 1. These 000, 010 indicates the label and suggest
that if you have these g I; I, input values the labeled line will be selected for the
output. The enable line is a good resource for combining two 3 x 8 decoders to make
one 4 x 16 decoder.

OU
on1
I, Do b —0,
I > 010
2 - c Oz
] 011
i D
ln 38 ——\ 100
I (Decoder) 0-0, __/e .
s (One of these
8 output lines r \ 101
is selected) f J O
Enable & - O
€ '
O)—" o,
(a) Block Diagram (b) Logic Diagram
Input : Output
I()]l [2 O!? OK OZ OJ Ol Oﬁ' 9 07
0 0 0] 0 00 0 0 0 0
0 it 1 0 ! (} 0 G]) 0
0 ! -‘,i 0 U 1 0 [¢] 0 0 0
0 [0 8] G | 0 9 0 0
{ 0 i 0 0 4] 4 1 §] 0 Q
i { { { { ¢ 0 { |] G
! i 0 {} 0 0 0 0 0 l 0
1 ! 1 4] G 0 0 0 0 fy !

77

78

Introduction to Digital
-Circuits

3.6.3 Multiplexer

Multiplexer is one of the basic building units of a computer system which in principle
allows sharing of a common line by more than one input lines. It connects multiple
input lines to a single output line. At a specific time one of the input lines is selected
and the selected input is passed on to the output line. The diagram 4 x 1 multiplexer

(MUX) is given in figure 3.16.

—_—

1 4 x 0 .

1 MUX S, S, 0]
0 0 I,

! 0 1 I
1 0 I,
1 1 I,

Sl SII
(a) Block diagram . (¢) Truth table

11
(]

(¢) Logic diagram
Figure 3.17: 41 Multiplexer

But how does the multiplexer know which line to select? This is controlled by the
select lines. The select lines provide the communication among the various
components of a computer. Now let us see how the multiplexer also known as MUX
works, here for simplicity we will take the example of 4 x | MUX i.e. there are 4 input
lines connected to 1 output line. For the sake of consistency we will call input line as
I, and output line as O and control line a selection line S or enable as E.

Please notice the way in which S, and S, are connected in the circuit, To the ‘a’ AND
gate S, and S are inputted in complement form that means ‘a’ gate will output I, when

both the selection lines have a value 0 which implies § =1 and S_l =1,ie.8,=0

and S;=0 and hence the first entry in the truth table. Please note that at S, =0 and S, =
0, AND gate ‘b’, ‘¢’, ‘d’ will yield 0 output and when all these outputs will pass OR
gate ‘e’ they will yield I, as the output for this case. That is for Sy=0 and S;=0 the
output becomes I, which in other words can be said as “ For So=0 and S,=0, I,
input line is selected by MUX”. Similarly other entries in the truth table are
corresponding to the logical nature of the diagram. Therefore, by having two control
lines we could have a 4 x 1 MUX. To have 8 x | MUX we must have 3 control lines or
with 3 control lines we could make 2° = 8 i.e. 8x 1 MUX. Similarly, with ‘n’ control
lines we can have

2"x 1 MUX. Another parameter which is predominant in MUX deéign is a number of
inputs to AND gate. These inputs are determined by the voltage of the gate, which
normally support a maximum of 8 inputs to a gate.

Principles of Logic

Where can these devices used in the computer? The multiplexérs are used in digital Cireniee T
. rcuns

circuits for data and controlled signal routing.

We have seen a concept where out of ‘n’ input lines, 1 can be selected, can we have a
reverse concept i.e. if we have one input line and data is transmitted to one of the
possible 2" lines where ‘n’ represents the number of selection lines. This operation is
called Demultiplexing.

3.6.4 Encoders

An Encoder performs the reverse function of the decoder. An encoder has 21 input
lines and ‘n’ output line. Let us see the 8 x3 encoder which encodes 8 bit information
and produces 3 outputs corresponding to binary numbers. This type of encoder is also
called octal-to— binary encoder. The truth table of encoder is shown in figure 3.17.

Ol)
Ll 8 %3
Encoder ©
02
(a) Block diagram
I I I, I I, Is Is I, O, O, Oy

| 0 0 0 0 0 0 0 Dy 0 0
0 1 0 0 0 0 0 0 D, 0 0 1
i 0 0 | 0 0 0 0 0 D, 0 1 0
0 0 0 1 0 0 0 0 D, 0 1 1
0 0 0 0 1 0 0 0 D, 1 0 0
0 0 0 0 0 1 0 0 Ds 1 0 1
0 0 0 0 0 0 1 0 Ds 1 1 0
0 0 0 0 0 0 0 1. | Dy 1 1 1

(b) Truth Table
Figure 3.18: Encoder

From the encoder table, it is evident that at any given time only one input is assumed
to have 1 value. This is a major limitation of encoder. What will happen when two
inputs are together active? The obvious answer is that since the output is not defined
the ambiguity exists. To avoid this ambiguity the encoder circuit has input priority so
that only one input is encoded. The input with high subscript can be given higher
priority. For example, if both D, and Dg are 1 at the same time, then the output will be
110 because D has higher priority then D,.

The encoder can be implimented with 3 OR gates whose inputs can be determined
from the truth table. The output can be expressed as:

Oo =I|+I3+]5+[7
‘01 :12+[3+16+I7
Oz :14+15+I6+l7

You can draw the K-Maps to determine above functions and draw the related
combinational circuit

79

80

Introduction to Digital
Circuits

3.6.5 Programmable Logic Array

Till now the individual gates are treated as basic building blocks from which various
logic functions can be derived. We have also learned about the stratergies of
minimization of number of gates. But with the advancement of technology the
integration provided by integrated circuit technology has increased resulting into
production of one to ten gates on a single chip (in small scale integration). The gate
level designs are constructed at the gate level only but if the design is to be done using
these SSI chips the design consideration needs to be changed as a number of such SST
chips may be used for developing a logic circuit. With MSI and VLSI we can put even
more gates on a chip and can also make gate interconnections on a chip. This
integeration and connection brings the advantages of decreased cost, size and
increased speed. But the basic drawback faced in such VLSI & MSI chip is that for
each logic function the layout of gate and interconnection needs to be designed. The
cost involved in making such custom designed is quite high. Thus, came the concept
of Programmable Logic Array, a general purpose chip which can be readily adopted
for any specific purpose.

The PLA are designed for SOP form of Boolean function and consist of regular
arrangements of NOT, AND & OR gate on a chip. Each input to the chip is passed
through a NOT gate, thus the input and its complement are available to each AND
gate. The output of each AND gate is made available for each OR gate and the output
of each OR gate is treated as chip output. By making appropriate connections any
logic function can be implemented in these Programmable Logic Array.

11 _/

(b)

Figure 319: Programmable Logic Array

Principles of Logic

i 2
The figure 3.18(a) shows a PLA of 3 inputs and 2 outputs. Please note tHe Cireutts 1

connectivity points, all these points can be connected if desired. Figure 3.18(b) shows
an implementation of logic function:

O(): Io. I[. lz+io.i 1. izand O[= i(]. i 1. iz"‘ _I_o. i 1 throughthe PLA.
3.6.6 Read-only-Memory (ROM)

The read-only-memory is an example of a Programmable Logic Device (PLD) i.e the
binary information that is stored within a PLD is specified in some fashion and
embedded within the hardware. Thus the information remains even when the power
goes.

m xn

—a] ——
ROM n

K address .

: Qutput Data lines

input

(a) Block Diagram

0000
0001
== o010
0011

4x 16
decoder

1101
' 1110

1111 lL

b) Logic Diagram of 64-bit ROM
Figure 3.20: ROM Design

Figure 3.19 shows the block diagram of ROM. It consists of ‘k’ input address lines
and ‘n’ output data lines. An m xn ROM is an array of binary cell organised into m
(2* = m) words of ‘n’ bits each. The ROM does not have any data input because the
write operation is not defined for ROM. ROM is classified as a combinational circuit
and constructed internally with decoder and a set of OR gates.

In general, a m x n ROM (where m= 2", k = no. of address lines) will have an internal
k x 2% decoder and ‘n” OR gate. Each OR gates has 2* inputs which are connected to

each of the outputs ol the decoder.
81

82

Introduction to Digital
Circuits

Check Your Progress 3
1) Draw a Karnaugh Map for 5 variables.

..
..

..

2) Map the function having 4 variables in a K- Map and draw the truth table. The
funcion is
F(A,B,C,D)= (2,6,10,14).

...
..

..

3) Find the optimal logic expression for the above function. Draw the reasultant
logic diagram.

..
...

...

4) What are the advantages of PLA?

...
...

...

5) Can a full adder be constructed using 2 half adders?

R O R R R N R R PR PR RN

3.7 SUMMARY

This unit provides you the information regarding a basis of a computer system. The
key elements for the design of a combinational circuit like adders etc. are discussed in
this unit. With the advent of PLA’s the designing of circuit is changing and now the
scenario is moving towards micro processors. With this developing scenario in the
forefront and the expectation of Ultra- Large- Integration (ULSI) in view, time is not
far of when design of logic circuits will be confined to single microchip components.
You can refer to latest trends of design and development including VHDL (a hardware
design language) in the further readings.

3.8 SOLUTIONS/ANSWERS

Check Your Progress 1

I. Logic gates produce typical outputs based on input valucs NAND and NOR are
universal gates as they can be used to constant any other logic gate.

2 Principles of Logic
’ . Circuits I

= 0+ B(A+A)+ B
= 0+B+B=B

3. A

aEE

4. B —>0——

A ——-dD—— F= A (Not Operation)

> —
—

Check Your Progress 2
1 (i):

F=(ABC+ABC)

ccoo »
_———0 O =
—) O n

0
0
1
0

83

Introduction to Digital
Circuits :

POS Form:

84

1 0 §]]
1 0 1 0
1 1 0 0
1 1 1 0
(ii)
A B F=(A+B). (A+B)
0 0 0
0 1 I
1 0 1
1 1 0
AN (Y
F = ((AB)+B)
= +A+B +B
= A+1 (B+Bisalwaysl)
1
(ii)
F = (AB).(AB)
- (A+B).(AB) _
= AAB+ A BB
= AB+ AB
= AB
3 SOP Form:
FAB CD‘O L I 0w, A 3__—
T J0 T 32 B
of 37 ¢ N\ —I T
12 3 [EIE ¢ —J r*——{x,//
1 FI_—D ’ |
g STT O 1. — }__.“W-,_J
IOG_Tr IRINEES D—————]
F=AB+BD+AC
FCD
ABN_ O O 110
00 0] 0)
o Koyt ol] o)
C .
1 6] 0
S
10
F=AB+BC+AD
F=(AB+BC+AD)
r=laBlBCLAD
F= (A +§).(§+C).(A+I—))

D

A r@——
E L)
—
Check Your Progress 3 :
L €
CDE
AB 000 001 011 010 110 111 101 100
0 1 3 2 6 7 5 4
00
8 9 11 10 14 15 13 12
01
" 24 25 27 26 30 31 29 28
10 16 17 19 18 22 23 21 20
2 K-Map
FCD
AB 00 01 11 10
00 0 1 3 ﬂ 2
I
12 i
" OB
g o 11 il' 10
10 [
Truth table
A B C D F
0 0 0 0 0
0 0 0 1 0
0 0 1 0 1
0 0 I 1 0
0 I 0 0 0
0 1 0 1 0
0 1 1 0 |
0 1 1 1 0
1 0 0 0 0

Principles of Logic

Circuits 1

85

86

Introduction; to-Digital
Circuits

—_ e e e e e e = O O

—— = —~ O 0 OO = -

_— O O = O O =
O = N T < S S S < S S
S —- 0 00 —- 0 O O -

One adjacency of 4 variables, So
F=C.D

PLA’s are generic chips that can be used to implement a number of SOP logic
function

(Previous carry)

