UNIT2 INTRODUCTION TO ASSEMBLY
LANGUAGE PROGRAMMING

Structure Page No.
2.0 Introduction ' " 35
2.1 Objectives , 35
22 The Need and Use of the Assembly Language 35
23 Assembly Program Execution : ‘ ; 36

24 An Assembly Program and its Components . 41
. 2.4.1 The Program Annotation
242 Directives

2.5 Input Output in Assembly Frogram 45
2.5.1 Interrupts ‘
252 DOS Function Calls (Using INT 21H)

2.6 The Types of Assembly Programs - 51
26.1 COM Programs .
262 EXE Programs

2.7 How to Write Good Assembly Programs A 53
2.8 Summary . : . - 55
2.9 Solutions/ Answers , 56
2.10 Further Readings , ‘ ; 56

2.0 INTRODUCTION

In the previous unit, we have discussed the 8086 imicroprocessor. We have discussed
the register set, instruction set and addressing modes for this microprocessor. In this
and two later units we will discuss the assembly language for 8086/8088
microprocessor. Unit 1 is the basic building block, which will help in better
understanding of the assembly language. In this unit, we will discuss the importance
of assembly language, basic components of an assembly program followed by
discussions on the program developmental tools available. We will then discuss what
are COM programs and EXE programs. Finally we will present a complete example.
For all our discussions, we have used Microsoft Assembler (MASM). However, for
different assemblers the assembly language directives may change. Therefore, before
running an assembly program you must consult the reference manuals of the
assembler you are using. '

2.1 OBJECTIVES

After going through this unit you' should be able to:

define the need and importance of an assembly program;

define the various directives used in assembly program;

write a very simple assembly program with s1mple input — output services;
define COM and EXE programs; and

differentiate between COM and EXE programs.

2.2 THE NEED AND USE OF THE ASSEMBLY
LANGUAGE

Machine language code consists of the 0-1 combmatlons that the computer decodes
dlrectly However the machine language has the following problems:

36

Assembly Language
Programming

o Itgreatly depends on machme and is difficult for most people to write in 0-1
forms. «

¢ DEBUGGING is difficult,

e Deciphering the machine code is very difficult. Thus program logic will be

difficult to understand.

'To overcome these difficulties computer manufacturers have devised English-like
words to represent the binary instruction of a machine. This symbolic code for each
instruction is called a mnemonic. The mnemonic for a particular instruction consists
of letters that suggest the operation to be performed by that instruction. For example,
ADD mmnemonic is used for adding two numbers. Using these mnemeonics machine
language instructions can be written in symbolic form with each machine instruction
represented by one equivalent symbohc mstructlon This is called an assembly

language.
Pros and Cons of Assembly Language

The following are some of the advantages / disadvantages of using assembly
language:

e Assembly Language provides more control over handling particular hardware and
software, as it allows you to study the instructions set, addressing modes,
interrupts efc.

¢ Assembly Programming generates smaller more compact executable modules: as
the programs are closer to machine, you may be able to write highly optimised
programs. This results in faster execution of programs.

Assembly languageﬁ progfams are at least 30% denser than the same programs written
in high-level language. The reason for this is that as of today the compilers produce a
long list of code for every instruction as compared to assembly language, which ‘

_produces single line of code for a single instruction. This will be true especially in

case of string related programs.

On the other hand assembly language is machine dependent. Each microprocessor has
its own set of instructions. Thus, assembly programs are not por_table.

Assembly 1anguage has very few restrictions or rules; nearly everything is left to the
discretion of the programmer. This glves lots of freedom to programmers. in
construction of their system.

Uses of Assembly Language

Assembly language is used primarily for writing short, specific, efficient interfacing
modules/ subroutines. The basic idea of using assembly is to support the HLL with
some highly efficient but non—portable routines. It will be worth mentioning here that
UNIX mostly is written in C but has about 5-10% machine dependent assembly code.
Similarly in telecommunication application assembly routine exists for enhancing
efficiency.

2.3 ASSEMBLY PROGRAM EXECUTION

An assembly program is written according to a strict set of rules. An editor or word
processor-is used for keying an assembly program into the computer as‘a file, and then
the assembler is used to translate the program into machine code.

There are 2'ways of converting an assembly language program into machine
language:

1) Manual assembly
Z) By usingan assembler.

Manual Assembly

1t was an old method that required the programmer to translate each opcode into its
nuwmerical machine language representation by looking up a table of the
microprocessor instructions set, which contains both assembly and machine language
. instructions. Manual assembly is acceptable for short programs but becomes very
inconvenient for large programs. The Intel SDK-85 and most of the earlier university
kits were programmed using manual assembly.

Using an Assembler

The symbolic instructions that you code in assembly language is known as - Source
program.

An assembler program translates the source prbgram into machine code, which is
known as object program.

Mnemonic bl Machine
Program Assembler Instructions

SourceCode Object Code

The steps required to assemble, link and execute a program are:

Step 1: The assembly step involves translating the source code into object code and
generating an intermediate .OBJ (object file) or module.

* The assembler also creates a header immediately in front of the generated
.OBJ module; part of the header contains information about incomplete
addresses. The .OBJ module is not quite in executable form.

Step 2: The link step involves converting the .OBJ module to an .EXE machine code
module. The linker’s tasks include completing any address left open by the
assembler and combining separately assembled programs into one exec utable
module.

The linker:

. combines assembled module into one executable program * -
. generates an .EXE module and initializes with specxal instructions to
. facilitate its subsequent loading for execution.

Step 3: The last step is to load the program for execution. Because the loader knows
where the program is going to load in memory, it is now able to resolve any
remaining address still left incomplete in the header. The loader drops the
header and creates a program segment preﬁx (PSP) immediately before the
program is loaded in memory. ’

Introduction to
Assembly Language
. Programming

.37

Assembly Language
Programming

" Editor
Files

Editor: create a Create an assembler
Program file (ASM) Source Program

Y
Prog.asm
y
Asse_mbler Assembler Assembiles the Source Program
Files _ to create an Object Program
y
Prog.obj
y
Linker This program creates an
) Executable Program (.EXE)
y
Prog.exe
y
Execute Load and execute the
EXE Program

Figure 2: Program Assembly

All this conversion and execution of Assembly language performed by Two-pass
assembler.

Two-pass assembler: Assemblers typically make two or more passes through a
source program in order to resolve forward references in a program. A forward
reference is defined as a type of instruction in the code segment that is referencing the
label of an instruction, but the assembler has not yet encountered the definition of that

instruction.

Pass 1: Assembler reads the entire source program and constructs a symbol table of
names and labels used in the program, that is, name of data fields and programs labels ;
and their relative location (offset) within the segment.

. ' : ; . Introduction t
Pass 1 determines the amount of code to be generated for gach instruction. . Assen:‘blr; L:n:::; g:

Programming’

Pass 2: The assembler uses the symbol table that it constructed in Pass 1. Now it
knows the length and relative position of each data field and instruction, it can
_complete the object code for each instruction. It produces .OBJ (Object file), .LST
(list file) and cross reference (.CRF) files.

Tools required for assembly language progrémming

‘The tools of the assembly p'rocess described below may vary in details.

" Editor

The editor is a program that allows the user to enter, modify, and store a group of
instructions or text under a file name. The editor programs can be classified in 2

groups.

¢ Line editors
e Full screen editors.

Line editors, such as EDIT in MS DOS, work with the manage one line at a time, Full
screen editors, such as Notepad, Wordpad etc. manage the full screen or a paragraph
at a time. To write text, the user must call the editor under the control of the operating
system. As soon as the editor program is transferred from the disk to the system
memory, the program control is transferred from the operating system to the editor
program. The editor has its own command and the user can enter and modify text by
using those commands. Some editor programs such as WordPerfect are very easy to
use. At the completion of writing a program, the exit command of the editor program
- will save the program on the disk under the file name and will transfer the control to
the operating system. If the source file is intended to be a program in the 8086
assembly language the user should follow the syntax of the assembly language and the
rules of the assembler. :

Assembler)

An assembly program is used to transfer assembly language mnemonics to the binary

code for each instruction, after the complete program has been written, with the help ,
'sOf an editor 1t is then assembled with the help of an assembler.
An assembler works in 2 phases, i.¢., it reads your source code two times. In the first
pass the assembler collects all the symbols defined in the program, along with their
offsets in symbol table. On the second pass through the source program, it produces
binary code for each instruction of the program, and give all the symbols an offset
with respect to the segment from the symbol table.

The assembler generates three files. The object file, the list file and cross reference

file. The object file contains the binary code for each instruction in the program. It is
created only when your program has been successfully assembled with no errors. The
errors that are detected by the assembler are called the symbol errors. For example,

MOVE AX]1, ZX1 ;

In the statement, it reads the word MOVE, it tries to match with the mnemonic sets, as
there is no mnemonic with this spelling, it assumes it to be an identifier and looks for
its'entry in the symbol table. It does not even find it there therefore gives an error as

" undeclared identifier. , .

List file is optional and contains the source code, the binary equivalent of each
instruction, and the offsets of the symbols in the program. This file is for purely .

39

Assenibly Language
Programming

documentation purposes. Some of the assemblets available on PC are MASM,
TURBO etc.

Linker

For modularity of your programs, it is better to break your program into several sub
routines. It is even better to put the common routine, like reading a hexadecimal
number, writing hexadecimal number, etc., which could be used by a lot of your other
programs into a separate file. These files are assembled separately. After each file
has been successfully assembled, they can be linked together to form a large file,
which constitutes your. complete program. The file containing the common routines
can be linked to your other program also. The program that links your program is
called the linker.

The linker produces a link file, which contains the binary code for all compound
modules. The linker also produces link maps, which contains the address information
about the linked files. The linker however does not assign absolute addresses to your
program. It only assigns continuous relative addresses to all the modules linked
starting from the zero. This form a program is said to be relocatable because it can be
put anywhere in memory to be run.

Loader

Loader is a program which assigns absolute addresses to the program. These
addresses are generated by adding the address from where the program is loaded into
the memory to all the offsets. Loader comes into action when you want to execute
your program. This program is brought from the secondary memory like disk. The
file name extension for loading is .exe or .com, which after loading can be executed
by the CPU.

Debugger
The debugger is a program that allows the user to test and 'debug the object file. The

user can employ this program to perform the following functions.

Make changes in the object code.

Examine and modify the contents of memory.

Set breakpoints, execute a segment of the program and display register contents
after the execution.

e Trace the execution of the specified segment of the program and display the

register and memory contents after the execution of each instruction.
e Disassemble a section of the program, i.e., convert the object code into the
source code or mnemonics. "

In summary, to run an assembly program you may require your computer:

e A word processor like notepad

e MASM, TASM or Emulator

e LINK.EXE, it may be included in the assembler
e DEBUG.COM for debugging if the need so be.

Errors
Two possible kinds of errors can occur in assembly programs:

a. Programming errors: They are the familiar errors you can encounter in the course
of executing a program written in any language.

b. System errors: These are unique to assembly language that permit low-level
operations. A system error is one that corrupts or destroys the system under
which the program is running - In assembly language there is no supervising

mterpreter or compiler to prevent a program from erasing itself or even from
erasing the computer operating system.

2.4 AN ASSEMBLY PROGRAM AND ITS
COMPONENTS

Sample Program

In this program we just display:

Line Offset)

Numbers ———— Source Code

0001 DATA SEGMENT

0002 0000 MESSAGE DB “HAVE A NICE DAY!$”

0003 DATA ENDS

0004 STACK SEGMENT

0005 STACK 0400H

0006 STACK ENDS

0007 - CODE SEGMENT

0008 ‘ ASSUME CS: CODE, DS: DATA SS: STACK

0009 Offset Machine Code
0010 0000 B8XXXX MOV AX, DATA

0011 0003 S8EDS MOV DS, AX

0012 0005 BAXXXX MOV DX, OFFSET MESSAGE
0013. 0008 B409 MOV AH, 09H

0014 000A CD21 INT 2i1H

0015 000C BB8004C MOV AX, 4CO0H

0016 000F CD21 INT 21H

0017 . CODE ENDS

0018 -END /

The details of this program are:

2.4.1 The Program Annotation

The program annotation consists of 3 columns of data: line numbers, offset and
machine code.

e The assembler assigns line numbers to the statements in the source file
sequentially. If the assembler issues an error message; the message will contain a
reference to one of these line numbers.

e The second column from the left contains offsets. Each offset indicates the
address of an instruction or a datum as an offset from the base of its logical
segment, e.g., the statement at line 0010 produces machine language at offset
0000H of the CODE SEGMENT and the statement at line number 0002 produces
machine language at offset 0000H of the DATA SEGMENT.

e The third column in the annotation displays the machine language produce by
code instruction in the program.

Segment numbers: There is a good reason for not leaving the determination of
segment numbers up to the assembler. It allows programs written in 8086 assembly

language to be almost entirely relocatable. They can be loaded practically anywhere -

in memory and run just as well. Program] has to store the message “Have a nice
:day$” somewhere in memory. It'is located in the DATA SEGMENT. Since the

Introdnctlon to
Assembly Language

Programmiing

-41

42

Assembly Language
Programming

characters are stored in ASCII, therefore it will occupy 15 bytes (please note each
blank is also a character) in the DATA SEGMENT.

Missing offset: The xxxx in the machine language for the instruction at lifie 0010 is
there because the assembler does not know the DATA segment location that will be
determined at loading time. The loader must supply that value,

Program Source Code
Each assembly language statement appeats as:
{identifier} Keyword {{parameter},} {;comment}.

The element of a statement must appear in the appropriate order, but significance is
attached to the column in which an element begins. Each statement must end with a
carriage return, a line feed.

Keyword: A keyword is a statement that defines the nature of that statement. Ifthe \ ¢
statement is a directive then the keyword will be the title of that directive; if the
statement is a data-allocation statement the keyword will be a data definition type.

Some examples of the keywords are: SEGMENT (directive), MOV (statement) etc.

Identifiers: An identifier is a name that you apply to an item in your program that
you expect to reference. The two types of identifiers are name and label.

1. Name refers to the address of a data item such as counter, arr etc.
2. Label refers to the address of our instruction, process or segment. For example
MAIN is the label for a process as:

MAIN PROC FAR
A20: BL,45; defines a label A20.

Identifier can use alphabet, digit or special character but it always starts with an
alphabet.

Parameters: A parameter extends and refines the meaning that the assembler
attributes to the keyword in a statement. The number of parameters is dependent on
the Statement.

Comments: A comment is a string of a text that serves only as internal dotument

action for a program. A semicolon identifies all subsequent text in a statement as a
comment. ' ‘ '

2.4.2 Directives

Assembly languages support a number of statements. This enables you to control the

way in which a source program assembles and list. These statements, called -
directives, act only when the assembly is in progress and generate no machine-
executable code. Let us discuss some common directives.

1. List: A list directive causes the assembler to produce an annotated listing on the
printer, the video screen, a disk drive or some combination of the three. An
annotated listing shows the text of the assembly language programs, numbers of
each statement in the program and the offset associated with each instruction and
each datum. The advantage of list directive is that it produces much more
informative output.

2. HEX: The HEX directive facilitates the coding of hexadecimal values in the
body of the program. That statement directs the assembler to treat tokens in the

source file that begins with a dollar sign as numeric constants in hexadecimal
notation.

PROC Directive: The code segment contains the executable code for a
program, which consists of one or more procedures defined initially with the
PROC directive and ended with the ENDP directive.

Procedure-name PROC FAR ; Beginning of Procedure
Procedure-name ENDP FAR ; End Procedure

END DIRECTIVE: ENDS directive ends a segment, ENDP directive ends a
procedure and END directive ends the entire program that appears as the last
statement.

ASSUME Directive: An .EXE program uses the SS register to address the base
of stack, DS to address the base of data segment, CS to address base of the code
segment and ES register to address the base of Extra segment. This directive tells
the assembler to correlate segment register with a segment name. For example,

ASSUME SS: stack_seg_name, DS: data_seg_name, CS: code_seg_name.

SEGMENT Directive: The segment directive defines the logical segment to
which subsequent instructions or data allocations statement belong. It also gives
a segment name to the base of that segment.

The address of every element in a 8086 assembly program must be represented
in segment - relative format. That means that every address must be expressed
in terms of a segment register and an offset {from the base of the segmented
addressed by that register. By defining the base of a logical segment, a segment
directive makes it possible to set a segment register to address that base and also
makes it possible to calculate the offset of cach element 11 that segment from a
common base.

An 8086 assembly language program consists of logical scgments that can be a
code segment, a stack segment, a data segment, and an exira segment.

A segment directive indicates to assemble all statements following it in a single
source file until an ENDS directive.

CODE SEGMENT

The logical program segment is named code segment. When the linker links a
program it makes a note in the header section of the program’s executable file
describing the location of the code segment when the DOS invokes the loader to
load an executable file into memory, the loader reads that note. -As it loads the
program into memory, the loader also makes notes to itself of exactly where in
memory it actually places each of the program’s other logical segments. As the
loader hands execution over to the program it has just loaded, it sets the CS
register to address the base of the segment identified by the linker as the code
segment. This renders every instruction in the code segment addressable in
segment relative terms in the form CS: xxxx.

The linker also assumes by default that the first instruction in the code segment
is intended to be the first instruction to be executed. That instruction will appear
in memory at an offset of 0000H from the base of the code segment, so the linker
passes that value on to the loader by leaving an another note in the header of the
.. program’s executable file.

introdaction to
Assembly Language
Programming

43

Assembly Language The loader sets the IP (Instruction Pointer) register to that value. This sets CS:iP
Program);nin gg g to the segment relative address of the first instruction in the progratt.

STACK SEGMENT

8086 Microprocessor supports the Word stack. The stack segtmetit parametefs
tell the assembler to alert the linker that this segment staterment defines the
program stack atea.

A program must have a stack area in that the ¢ompuiter is continuoisly cartying
on several background operations that are completely transparent, evei to 4il
assembly language programmer, fot exanmiple, a real tinie ¢lock. Bvery 55
milliseconds the real time clock interrupts. Bvery 55 ins the CPU is ititerrupted.
The CPU records the state of its registers and then goes about updating the
system clock. When it finishes servicing the system clock, it has to restore the
registers and go back to doing whatever it was doing when the interruption
occurred. All such information gets recorded in the stack. If your program has
no stack and if the real time clock were to pulse while the CPU is rufiriing your
program, there would be no way for the CPU to find the way back to yout
program when it was through updating the clock. 0400H byte 18 the default size
of allocation of stack. Please note if you have not Spéclﬁed the stack segment it
is automancalfy created,

DATA SEGMENT

It contains the data allocation statements for a program. This segment is very
useful as it shows the data organization.

Defining Types of Data
The following format is used for defining data definition:
Format for data definition:

{Name} <Directive> <expression>

Name - aprogram teferences the data item through the name although it is
optional,

Directive: Specifying the data type of assembly.

Expression: Represent a value or evaluated to value.

The list of directives are given below:

Directive Description Number of Bytes

DB | - Define byte 1

DWW Define word 2

DD Define double word 4

DQ ' " Define Quad word 8

DT Define 10 bytes 10 -

DUP D1rect1ve is used to duplicate the bas1c data definition to * number of
tlmes ‘ .

ARRAY DB 10 DUP (0)

In the above statement ARRAY is the name of the data item, which is of byte
type (DB). This array contains 10 duplicate zero values; that is 10 zero values.

EQU directive is used to define a natne to a constant

CONST EQU 20

Type of number used in data statements can be octal, binary, haxadecimal, Introduction to

P Assembly L
desimal and ASCIL The above statement defines a name CONST to a value 20. ssempny,;::?:;fz

Some other examples of using these directives are:

TEMP bB 0111001B ; Binary value in byte operand
; named temp

VALI DW 7341Q ; Octal value assigned to word -
; variahle

Decimal DB 49 ; Decimal value 49 contained in
» byte variable

HE¥X DW 03B2AH ; Hex decimal value in word
y operand

ASCH DB EXAMPLE' ; ASCII array of values,

E¥ Cheek Your Progress 1

1. Why should we learn assembly language?

by

R R TR R R F R R R RN TN SN TR RN R R R T R N RN TR E R N

3. State True or False, : T|F
(a) The directive DT defines a quadword in the memory : '

¢b) DUP directive is used to indicate if a same memory location is used by two

different variables name. . ‘ D

(c) EQU directive assign a name to a constant value.
(d) The maximum number of active segments at a time in 8086 can be four. D

{¢) ASSUME directive specifies thc physical address for the data values of

instruction. D
]

() A statement after the END directive is ignored by the assembler.

2.5 INPUT OUTPUT IN ASSEMBLY PROGRAM

A softwarg interrupt is a call to an Interrupt servicing program loeated in the of)erating
system. Usually the input-output routine in 8086 is gonstructed using these interrupts.

2.5.1 Interrupts

An interrupt causes interruption of an ongoing program. Some of the common’
interrupts are: keyboard, printer, monitor, an error condition, trap etc. ‘

8086 recognizes two kinds of interrupts: Hardware interrupts and Software
interrupts. ' .

45

46

Asscmibdy Language
Programmang

Hardware interrupts are generated when a peripheral Interrupt servicing program
requests for some service. A software interrupt causes a call to the operating system. It
usually is the input-output routine,

Let us discuss the software interrupts in more detail. A software interrupt is initiated
using the following statements:

INT number

In 8086, this interrupt instruction is processing using the interrupt vecior table
(IVT). The IVT is located in the first 1K bytes of memory, and has a total of 256
entities, each of 4 bytes. An entry in the interrupt vector table is ideatilicd by the
number given in the interrupt instruction. The entry stores the address of the operating
system subroutine that is used to process the interrupt. This address may be difterent
for different machines. Figure 1 shows the processing of an interrupt.

Calling Program @ ROM BIOS
CLD
MOV.... @ 4 FooO: '

INT 10H F065
ADD....
IRET
Return to

calling program

Entry FOOOH
for
10th F065H

< 4

IVvT

Figure 1: Processing of an Interrupt

The interrupt is processed as:

Step 1: The number field in INT instruction is multiplied by 4 to find its entry in the
interrupt vector table. For example, the IVT entry for instruction INT 10h will
be found at IVT at an address 40h. Similarly the entry of INT 3h will be
placed at OCh. .

Step 2: The CPU locates the interrupt servicing routine (ISR) whose address is stored
at IVT entry of the interrupt. For example, in the figure above the ISR of INT
10h is stored at location at a segment address FOOOh and an offset FO65h.

Step 3: The CPU loads the CS register and the IP register, with this new address in
the IVT, and transfers the control to that address, just like a far CALL,-
(discussed in the umt 4).

Step 4: IRET (interrupt return) causes the program to resume execution at the next
instruction in the calling program.

Keyboard Input and Video output

A Keystroke read from the keyboard is called a console input and a character
displayed on the video screen is called a console output. In assembly language,
reading and displaying character is most tedious to program. However, these tasks
were greatly simplified by the convenient architecture of the 8086/8088. That

architecture provides for a pack of software interrupt vectors beginning at address

(000:0000.

The advantage of this type of call is that it appears static to a programmer but flexible
to a system design engineer, For example, INT 00H is a special system level vector
that points to the “recovery from division by zero™ subroutine. If new designer come
and want to move interrupt location in memory, it adjusts the entry in the IVT vector
of interrupt 00H to a new location. Thus from the system programmer point of view,

it is relatively easy to change the vectors under program control.

One of the most commonly used Interrupts for Input /Output is called DOS function
call. Let us discuss more about it in the next subsection:

2.5,2 DOS Funetlon Calls (Using INT 21H)

INT 21H supports about 100 different functions. A function is identified by putting
the function number in the AH register. For example, if we want to call function
number 01, then we place this value in AH register first by using MOV instruction
and then call INT 21H:

Some important DOS function calls are:

DOS Purpose Example

Function Call

AH=01H | For reading a single To get one character input in a variable
character from keyboard | in data segment you may include the
and echo it on monitor, following in the code segment:

The input value is put in MOV AH,01
AL register. INT 21H
MOV X, AL
(Please note that interrupt call will
return value in AL which is being
transferred to variable of data segment
. X. X must be byte type).

AH = 02H This function prints 8 bit | To print a character let say *?> on the
data (normally ASCII) screen we may have to use following
that 1s stored in DL set of commands:
register on the screen. MOV AH, 02H;

MOV DL, ‘¥
INT 21H

AH =08H This is an input function Same example as 01 can be used only
for inputting one difference in this case would be that the
character, This is same as | input character wouldn’t get displayed
AH = 01H functions with | MOV AH, 08H
the only difference that INT 21H
value does not get MOV X, AL
displayed on the screen.

AH=09H This program outputs a To print a string “hello world” followed
string whose offset is by a carriage return (control character)
stored in DX register and | we may have to use the following
that is terminated usinga | assembly program segment.
$ character, One ¢an print
newline, tab ¢haracter
also,

Introduction to
Assembly Languag:
Programming

47

Exampleof | CREQUODH
AH = 09H ; ASCII code of carriage return.
: DATA SEGMENT
STRING DB ‘HELLO WORLD', CR, ‘§’
DATA ENDS
CODE SEGMENT

Assembly Language
Programming

MOV AX, DATA
MOV DS, AX
MOV AH, 09H
MOV DX, OFFSET STRING
; Store the offset of string in DX register. -
INT21H

AH=0AH For input of string up to Look in the examples given.
255 characters. The string
is stored in a buffer.

LAH = 4CH Return to DOS

Some examples of Input
(i) Ipput asingle ASCII character into BL register without echo on screen
CODE SEGMENT

MOV AH, 08H ; Function O8H
INT 2IH ;' The character input in AL is
MOV BL, AL ; transfer to BL

CODE ENDS

(i) Input a Single Digit for example (0,1, 2, 3, 4,5, 6,7, 8, 9)
CODE SEGMENT |

; Read a smgle digit in BL register with echo. No error check in the Program
MOV AH, 01H

INT 21H
; Assuming that the value entered is digit, then its ASCII will be stored in AL.
; Suppose the key pressed is 1 then ASCII ‘31’ is stored in the AL. To get the
- ; digit 1 in AL subtract the ASCH value ‘0’ from the AL register.
; Here it store 0 as ASCII 30,
; 1as 31, 2as32....... 9as 39
; to store 1 in memory subtract 30 to get 31 - 30 =
' MOV BL, AL
SUB BL,'0’; ‘0 isdigit 0 ASCII
; OR
SUB BL, 30H
; Now BL contain the single digit 0 to 9
; The only code missing here is to check whether the 1nput is in the specific
-, range.

CODE ENDS,

(i) Inputnumbers like (10, 11..v.veene... 99)

; If we want to store 39, it is actually 30 + 9
,andltls3 x10+9
; to input ,ths value through keyboard first we input the tenth digite.g., 3 and

. . lntrodnctidn 13
; then type 9 : rusembly Language
MOV AH, 08H Programming

INT 21H
MOV BL, AL ; If we have input 39 then, BL will {irst have characicr
; 3, we can convert it to 2 using previous logic that s 33 - 30 - 5,
SUB BL,‘0 ‘ ;
MUL BL, AH ; To get 30 Multiply it by 10.
; Now BL Store 30
; Input anocther digit from keyboard
MOV AH, G8H

INT 21H;
MOV DL, AL ;‘Store ALL in DL
SUB DL,'0 ;o (39-30)=9.

; Now BL contains the value: 30 and DL has the value 9 add them and get the

; required numbers.
ADD BL,DL
; Now BL store 39. We have 2 digit value in BL.

Let us try to summarize these segments as:

CODE SEGMENT

; Set DS register
MOV AX, DATA ;7] boiler plate code to set the DS register so that the
MOV DS, AX - ;} program can access the data segment.

; read first digit from keyboard

MOV AH, 08
INT 21H
MOV BL, AL
SUB BL,'0’

MUL BL, 10H
. ; read second digit from keyboard
MOV AH, 08H

INT 2IH
MOV DL, AL
SUB DL,‘0’

; DLL=9 AND BL = 30
SUM BL, DL

; now BL store 39

CODE ENDS.

Note: Bo:lerplate code is the code that is present more or less in the same form in
every assembly language program.

Strings Laput
CODE SEGMENT ' '

MOV AH, 0AH ; Move 04 to AH register
MOV DX, BUFF ; BUFF must be defined in data segment.
INT 21H

CODE ENDS
DATA SEGMENT
BUFF DB 50 ; max length of string,
; including CR, 50 characters
DB ? ; actual length of string not known at present
DB 50 DUP(0) ; buffer having 0 values
DATA ENDS.

49

50

Assembly Language
Programming

~ Inputa lctter from keyboard and respond. “The letter you typed is_

Explanation
The above DATA segment creates an input buffer BUFF of thaximum 50 characters, -
On wnput of data ‘JAIN’ followed by enter data would be stored as:

(5074 {J IA [1_ [N [#]

Examples of Display on Video Monitor
(1) Displaying a single character

; display contents of BL register (assume that i it has a single character)
MOV AH, 02H

MOV DL, BL.

INT 21H.

Here data from BL is moved to DL and then data display on monitor function is called
which displays the contents of DL register.

(2) Displaying a single digit (0 to 9)

Assume that a value 5 is stored in BL register, then to output BL as ASCII value add
character ‘0’ to it

ADD BL,'0
MOV AH, 02H
MOV DL, BL
INT 21H

(3) Displaying a number (10 to 99)

Assuming that the two digit number 59 is stored as number 5 in BH and number 9 in
Bl to convert them to equivalent ASCII we will add ‘0’ to each of them:

ADD BH,'0’
ADD BL,'0’
MOV AH, 02H
MOV DL, BH
INT “21H
MOV DL, BL
INT 21H

(4) Displaying a string

MOV AH, 09H
MOV DX, OFFSET BUFF
INT 21H - . .

Here data in input buffer stored in'data segment is going to be displayed on the
monitor.

-

) A complete program:

»”

.CODE SEGMENT o Introduction to

i set the DS register A’“"‘;’:ﬁ;:‘f::::;‘
MOV AX, DATA
= MOV DS, AX
i Read Keyboard
MOV AH, 08H ‘ |
, INT 2iH g
;. Saveinput
MOV BL, AL
: Display first part of Message
MOV AH, 09H
MOV DX, OFFSET MESSAGE
INT 21 H
i Display character of BL reglster
MOV AH, 02H .
MOV DL, BL
INT 21 H
; Exit to DOS
MOV AX, 4C00H
INT 21H
CODE ENDS
DATA SEGMENT ' =
MESSAGE DB “The letter you typed is $” '
DATA ENDS
END,

'2.6 THE TYPES OF ASSEMBLY PROGRAMS

~ Assembly language programs can be written in two ways:

coM Program; Having all the segments as part of one segment
-, BXE Program; which have more than one segment.

Let us look into bricf details of these programs,

2.6.1 COM Programs

‘A COM (Command) program is the binary image of a machine language program. It
is loaded in the memory at the lowest available segment address. The program code
hegins at an offset 100h, the first 1K locations being occupied by the IVT.

A COM program keeps its code, data, and stack segments within the same segment.
Since the offsets ina p gswal segment can be of 16 bits, therefore the size of COM.
program is limited to 2'“ = 64K which includes code, data and stack. The lelowmg
pmgram shows a COM program:

: Title add two numbers and store the result and carry in memory variables.
; name of the segment in this program is chosen to be €SEG

CSEG SEGMENT
ASSUME C§:CSEG, DS: CSEG $S:CSEG
ORG 100h .
START:MOV AX,LSEG ; Initialise data segment
- MOV DS, AX ; register using AX !
MOV AL, NUM1 ; Take the first number in AL

51

Assembly Language
Programming

ADD AL, NUM?2
MOV RESULT, Al
RCL AL, 01

AND AL, H0600001B
MOV CARRY, Al

: Add the 2™ number to it
; Store the result in location RESULT

: Rotate carry into LSBE
; Mask out all but LSB

; Store the carry result

MOV AX,4C00h

INT 21h
NUMI DB 15h ; First number stored here ‘
NUM?2 DB 20h ; Second number stored here

RESULTDB ?
CARRY DB 7
CSEG ENDS
END START

; Put sum here
; Put any carry here

These programs are stored on a disk with an extension .com. A COM prograin
requires less space on disk rather than equivalent EXE program. At run-time the COM
program places the stack automatically at the end of the segment, so they use a: least
one complete segment.

2.6.2 EXE Programs

An LXE program is stored on disk with extension .exc. EXE prograras are longer than
the COM programs, as each EXE program is associated with an EXE header of 256
bytes followed by a load module containing the program itself. The EXE heade:
contains information for the operating system to calculate the addresses of segments
and other components, We will not go into such details in this unit.

) The load module of EXE program consists of up to 64K segments, although at the
- most only four segments may be active at any time. The segments may be of variable
stze, with maximum size being 64K.

We will write only EXE programs for the following reasons:

s EXE programs are better suited for debugging.

¢ EXE-format assembler programs are more easily converted into subroutines for
high-level languages.

¢ EXE programs are more casily relocatable. Because, there is no ORG statement,
forcing the program to be loaded from a specific address.

e To fully use multitasking operating system, programs must be able 10 share
computer memory and resources. An EXE program is easily able to do this.

An exaniple of equivalent EXE program for the COM program is:

this program adds 2 8-bit numbers in the memory locations

NUMI and NUM2. The result is stored in the

memory location RESULT. If there was a carry

; from the addition it will be stored as 0000 0001 in

; the location CARRY

; REGISTERS Uses CS, DS, AX

DATA SEGMENT
NUM1 DB 15h
NUM2 DB 20h

. ABSTRACT

3

N
; First number
; Second number

RESULT DB ? ; Put sum here
CARRY DB ? ; Put any carry here
DATA END3

. CODE SEGMENT
_ASSUME CS:CODE, DS:DATA
START:MOV AX, DATA ; Initialise data segment

MOV DS, AX ; register using AX

MOV AL, NUMI1 ; Bring the first number in AL

ADD AL, NUM?2 : Add the 2™ number to AL

MOV RESULT, AL ; Store the result

RCL AL, 01 ; Rotate carry into Least Significant Bit (LSB)

AND AL, 00000001B ; Mask out all but I.SB
MOV CARRY, AL ; Store the carry
MOV AX, 4C00h ; Terminate to DOS
INT 21h

CODE ENDS
END START

2.7 HOW TO WRITE GOOD ASSEMBLY
PRIOGRAMS

Now that we have seen all the details of assembly language programming, let us
discuss the art of writing assembly programs in brief.

Preparation of writing the program

1. Write an algorithm for your program closer to assembly language. For example,.
the algorithm for preceding program would be:

get NUMI1
add NUM2
put sum into memory at RESULT
position carry bit in LSB of byte
mask off upper seven bits
store the result in the CARRY location.

2. Spec:ify the input and output required.

inpuit required - two 8-bit numbers
output required - an 8-bit result and a 8-bit carry in memory.

3. Study the instruction set carefully. This step helps in specifying the available
instructions and their format and constraints. For example, the segment registers
cannot be directly initialized by a memory variablé. Instead we have to first move
the offset for segment into a register, and then move the contents of register to the
segment register.

You can exit to DOS, by using interrupt routine 21h, with function 4Ch, placed in AH
register.

Introduction to
Assembly Language
Programming

53

54

Assembly Language

. Pragramming

It is a nice practice to first code your program on paper, and use comments liberally.

i

This makes programming easier, and also helps you understand your program later.

Please note that the number of comments de not affect the size of the program.

Afier the program development, you may assemble it using an assembler and eorrect
it for errors, finally ereating exe file for execution.

B Check Your Progress 2

State True of False , -

1. For input/ putput an Inte] 8086/8088 machine running op DOS
requirg speeial routines 1o be written by the assembly programmers.

2. Intel 8086 processor recognises only the sofiware interrupts.

3. INT ipstrction in effect calls a subronting, which is identified by a

' number.

4. Interrupt vector table IVT stores the interrupt hendling programs.

5. INT 21His a DOS fynction call.

6, INT 21H will output a character on the mapiter if AH tegisier
contains 02.

7. Stringi inpnt and oy 1Eut can be.achigved using INT 21H with
funetion numbﬁr 09h and AN respectively.

8. To perform fina] exit to DOS we mpst usg fupction 4CH with
the INT 21H.

9. Notepad is an editor package.

10. Linking is required to link several segments of a single
assembly program.

11. Debugger helps in removing the syntax errors of a program.

12.. COM program is loaded at the 0" location in the memory.

13. The size of COM program should not exceed 64K.

"14. A COM program is longer than an EXE program.

15. STACK of a COM program is kept af the end of the peeupied
segment py the p;ogram. '

16. EXE program capfeins a header modple, which is used by DOS for

‘ calculatmg segment gdq;g§sg§

17. EXE program canpot | Be easily debugged in comparison to -
€0M programs-

18.

EXE programs are more gasily relocatable than COM programs.

§
4 . T
. ; :

b
|

00 0 O 00000 00 0 00000

Introduction to
Assembly Language

' 2.8 SLTMMARY “ Prograniming

We sumtharize the complete discussion in the following flow chart.

“Start the
problem !

A

Define problem

-
gl Bl

Develop algorithm

A

Create source file
with editor

Assemble

Yes

No

Link

Use debugger ?

v VL -
' Load and run
‘Load debugger » your program

Load program

- Run and test program

User debugger tools
to find error

Assembly Language 2.9 SOLUTIONS/ ANSWERS

Programming

Check Your Progress 1

1. (a) It helps in better understanding of computer architecture and work in
machine language.
(b) Results in smaller machine level code, thus result in efficient execution of
programs,
(c) Flexibility of use as very few restrictions exist.

2. A segment identifier a group of instructions or data value. We have four
segments. .
1. Data segment 2. Code segment 3. Stack segment 4. Extra Segment

3. (a) False
(h) False
{c) True
(d) True
(e) False
(6 True

Check Your Progress 2

1. False

2. False

3. True

4. False

5. True

6. True

7. True

8. True

9. True

10. False

11. False

12. False

13. True

14. False

15. True

16. True

17. False

18. True

2.10 FURTHER READINGS

1. Yu-Cheng Lin, Genn. A. Gibson, “Microcomputer System the 8086/8088
Family” 2™ Edition, PHL

2. Peter Abel, “IBM PC Assembly Language and Programming”, 5™ Edition, PHI.

3. Douglas, V. Hall, “Microprocessors and Interfacing”, 2™ edition, Tata

McGraw-Hill Edition.

Richard Tropper, “Assembly Programming 8086, Tata McGraw-Hill Edition.

M. Rafiquzzaman, “Microprocessors, Theory and Applications: Intel and

Motorala”, PHI.

w ok

