
UNIT 2 INTRODUCTION TO ASSEMBLY
LANGUAGE PROGRAMMING

2.0 Introduction
2.1 Objectives
2.2 The Need and Use of the Assembly Language
2.3 Assembly Program Execution
2.4 An Assembly Program and its Components

2.4.1 The Program Annotation
2.4.2 Directives

2.5 Input Output in Assembly F rogram
2 5 1 Interrupts
2 5.2 DOS Funcoon Calls (L 51ng INT 21H)

2.6 The Types of Assembly Pro,pms
2 6.1 COM Programs
2 6 2 EXE Programs

2.7 How to Wnte Good Assembly Programs
2.8 Summary
2.9 Solutions/Answers
2.10 rurther Readings

2,O INTRODUCTION

In the previous unit, we have discussed the 8086 inicroprocessor. We have discussed
the register set, instruction set and addressing modes for this microprocessor. In this
and two later units we will discuss the assembly language for 8086/8088
microprocessor. Unit 1 is the basic building block. which will help in better
understanding of the assembly language. In this unit, we will discuss the importance
of assembly language, basic components of an assembly program followed by
discussions on the program developmental tools available. We will then discuss what
are COM programs and EXE programs. Finally we will present a complete example.
For all our discussions, we have used Microsoft Assembler (MASM). However, for
different assemblers the assembly language directives may change. Therefore, before
running an assembly program you must consult the reference manuals of the
assembler you are using.

2,l OBJECTIVES

After going through this unit you' should be able to:

define the need and importance of an assembly program;
define the various directives used in assembly program;
write a very simple assembly program with simple input - output services;
define COM and EXE programs; and
differentiate between COM and EXE programs.

2.2 THE NEED AND USE OF THE ASSEMBLY
LANGUAGE

Machine language code consists of the 0-1 combinations that the computer decodes
directly. However, the machine language has the following problems:

It greatly depends on machine and is difficult for most people to write in 0- 1
Assembly Language

forms. . Programming
DEBUGGING is difficult.
Deciphering the hachine code is very difficult. Thus program logic will be
difficuit to understand.

To overcome these difficulties computer manufacturers have devised English-like
words to represent the binary instruction of a machine. This symbolic code for each
instruction is called a mnemonic. The mnemonic for a particular instruction consists
of letters that suggest the operation to be performed by that instruction. For exqmple,
ADD mnemonic is used for adding two numbers. Using these mnemonics machine
language instructions can be written in symbolic form with each machine instruction
represented by one equivalent symbolic instruction. This is called an assembly
language.

Pros and Cons of Assembly Language

The following are some of the advantages 1 disadvantages of using assembly I
language:

Assembly Language provides more control over handling particular hardware and
software, as it allows you to study the instructions set, addressing modes,
interrupts etc.
Assembly Programming generates smaller, more compact executable modules: as
the programs are closer to machine, you may be able to write highly optimised
programs. This results in faster execution of programs.

Assembly language programs are at least 30% denser than the same programs written
in high-level language. The reason for this is that as of today the compilers produce a
long list of code for every instruction as compared to assemtrfy language, which
produces single line of code for a single instruction. This will be true especially in
cFe of string related programs.

On the other hand assembly language is machine dependent. Each microprocessor has
its own set of instructions. Thus, assembly programs are not portable.

Assembly language has very few restrictions or rules; nearly everything is left to the
discretion of the programmer. This gives lots of freedom to programmers in
construction of their system.

Uses of Assembly Language

~ssembly language is used primarily for writing short, specific, efficient interfacing
modules/ subroutines. The basic idea of using assembly is to support the HLL with
some highly efficient but mn-portable routines. It will be worth mentioning here that
UNIX mostly is written in C but has about 5-10% machine dependent assembly code.
Similarly in telecommunication application assembly routine exists for enhancing
efficiency.

2.3 ASSEMBLY PROGRAM EXECUTION

An assembly program is written according to a strict set of rules. An editor or word
processor is used for keying an assembly program into the computer as a file, and then
the assembler is used to translate the program into machine code.

There are 2-ways of converting an assembly language program into machine
language:

lntroduction to
Assembly Language

Programming

FvIanual Assembly I
It was an old method that required the programmer to translate each opcode into its
~umerical machine language representation by looking up a table of the
~nicroprocessor instructions set, which contains both assembly and machine language
~nstructions. Manual assembly is acceptable for short programs but becomes very
lmconvenient for large programs. The Intel SDK-85 and most of the earlier university
 its were programmed using manual assembly.

!w Using an Assembler

The symbolic instructions that you code in assembly language is known as - Source
program.

An assembler program translates the source program into machine code, which is
known as object program.

Mnemonic
Pr0~ram lnctnwtinnc

SourcvCode Object Code '

Tl~e steps required to assemble, link and execute a program are:

Step 1: The assembly step involves translating the source code into object code and
generating an intermediate .OBJ (object file) or module.

The assembler also creates a header immediately in front of the generated
.OBJ module; part of the header contains information about incomplete
addresses. The .OBJ module is not quite in executable form.

Step 2: The link step involves converting the .OBJ module to an .EXE machine code
module. The linker's tasks include completing any address left open by the
assembler and combining separately assembled programs into one executable
module. s

The linker:

combines assembled module into one executable program /'

generates an .EXE module and initializes with special instructions to
facilitate its subsequent loading for execution.

Step 3: The last step is to load the program for execution. Because the loader knows
where the program is going to load in memory, it is now able to resolve any
remaining address still left incomplete in the header. The loader drops the

Assembly Language
Programming

Create an assembler

Assembles the Source Program
to create an Object Program

This program creates an
Executable Program (.EXE)

Load and execute the

Figure 2: Program Assembly

All this conversion and execution of Assembly language performed by Two-pass
assembler.

Two-pass assembler: Assemblers typically make two or more passes through a
source program in order to resolve forward references in a program. A forward
reference is defined as a type of instruction in the code segment that is referencing the
label of an instruction, but the assembler has not yet encountered the definition of that
instruction.

\

Pass 1: Assembler reads the entire source program and constructs a symbol table of
names and labels used in the program, that is, name of data fields and programs labels
and their relative location (offset) within the segment.

Introduction to
F'ass 1 determines the amount of code to be generated for each instruction. Assembly Language

Programming
I'ass 2: The assembler uses the symbol table that it constructed in Pass 1. Now it
krnows the length and relative position of each data field and instruction, it can
complete the object code for each instruction. It produces .OBJ (Object file), .LST
(list file) and cross reference (.CRF) files.

1 Tools required for assembly language programming 1
'The tools of the assembly process described below may vary in details.

]Editor

'The editor is a program that allows the user to enter, modify, and store a group of
~nstructions or text under a file name. The editor programs can be classified in 2
goups.

Line editors
Full screen editors.

Line editors, such as EDIT in MS DOS, work with the manage one line at a time. Full
screen editors, such as Notepad, Wordpad etc. manage the full screen or a paragraph
at a time. To write text, the user must call the editor under the control of the operating
system. As soon as the editor program is transferred from the disk to the system
memory, the program control is transferred from the operating system to the editor
program. The editor has its own command and the user can enter and modify text by
using those commands. Some editor programs such as Wordperfect are very easy to
use. At the completion of writing a program, the exit command of the editor program
will save the program on the disk under the file name and will'transfer the control to
the operating system. If the source file is intended to be a program in the 8086
assembly language the user should follow the syntax of the assembly language and tlie
rules of the assembler.

Assembler
i

An assembly program is used to transfer assembly language mnemonics to the binary
code for each instruction, after the complete program has been written, with the help
of an editor it is then assembled with the help of an assembler.

*3

An assembler works in 2 phases, i.e., it reads your source code two times. In the first
pass the assembler collects all the symbols defined in the program, along with their
offsets in symbol table. On the second pass through the source program, it produces
binary code for each instruction of the program, and give all the symbols an offset
with respect to the segment from the symbol table.

The assembler generates three files. The object file, the list file and cross reference
file. The object file contains the binary code for each instruction in the program. It is
created only when your program has been successfully assembled with no errors. The
errors that are detected by the assembler are called the symbol errors. For example,

I
MOVE AXl, 2x1 ;

In the statement, it reads the word MOVE, it tries to match with the mnemonic sets, as
there is no mnemonic with this spelling, it assumes it to be an identifier and looks for
its-entry in the symbol table. It does not even find it there therefore gives an error as a undeclared identifier.

documentation purposes. Some of the assemblers available on PC are MASM,
Assembly Language
Programming TURBO etc.

Linker

For modularity of your programs, it is better to break your program into several sub
routines. It is even better to put the common routine, like reading a hexadecimal
number, writing hexadecimal number, etc., which could be used by a lot of your other
programs into a separate file. These files are assembled separately. After each file
has been successfully assembled, they can be linked together to form a large file,
which constitutes your complete program. The file containing the common routines
can be linked to your other program also. The program that links your program is
called the linker.

The linker prodpces a link file, which contains the binary code for all compound
modules. The linker also produces link maps, which contains the address information
about the linked files. The linker however does not assign absolute addresses to your
program. It only assigns continuous relative addresses to all the modules linked
starting from the zero. This form a program is said to be relocatable because it can be
put anywhere in memory to be run.

Loader

Loader is a program which assigns absolute addresses to the program. These
addresses are generated by adding the address from where the program is loaded into
the memory to all the offsets. Loader comes into action when you want to execute
your program. This pmgram is brought from the secondary memory like disk. The
fik name extension for loading is .exe or .corn, which after loading can be executed
by the CPU.

Debugger

The debugger is a program that allows the user to test and debug the object file. The
user can employ this program to perform the following functions.

Make changes in the object code.
Examine and modify the contents of memory.
Set breakpoints, execute a segment of the program and display register contents
after the execution.
Trace the execution of the specified segment of the program and display the
register and memory contents after the execution of each instruction.
Disassemble a section of the program, i.e., convert the object code into the
source code or mnemonics.

In summary, to run an assembly program you may require your computer:

A word processor like notepad
MASM, TASM or Emulator
LINK.EXE, it may be included in the assembler
DEBUG.COM for debugging if the need so be.

Errors

Two possible kinds of errors can occur in assembly programs:

a. Programming errors: They are the familiar errors you can encounter in the course
of executing a program written in any language.

b. System errors: These are unique to assembly language that permit low-level
operations. A system error is one that corrupts or destroys the system under
which the program is running - In assembly language there is no supervising

d!u

interpreter or compiler to prevent a program from erasing itself or even from
erasing the computer operating system.

Introduction to
Assembly Language

Programming

2.4 AN ASSEMBLY PROGRAM AND ITS
COMPONENTS

Sample Program

In this program we just display:

Line Offset
Numbers Source Code
0001 DATA SEGMENT
0002 0000 MESSAGE DB "HAVE A NICE DAY!$"
0003 DATA ENDS
0004 STACK SEGMENT
0005 STACK 0400H
0006 STACK ENDS
0007 CODE SEGMENT
0008 ASSUME CS: CODE, DS: DATA SS: STACK
0009 Offset Machine Code
0010 0000 B8XXXX MOV AX, DATA
0011 0003 8ED8 MOV DS, AX
0012 0005 BAXXXX MOV DX, OFFSET MESSAGE
0013: 0008 B409 MOV AH, 09H
0014 OOOA CD21 INT 21H
0015 OOOC B8004C MOV AX, 4COOH
0016 OOOF CD21 INT 21H
0017 CODE ENDS
0018 END

The details of this program are:

I 2.4.1 The Program Annotation
I
1

I The $rograrn annotation consists of 3 columns of data: line numbers, offset and
machine code.

The assembler assigns line numbers to the statements in the source file
sequentially. If the assembler issues an error message; the message will contain a
reference to one of these line numbers.

The second column from $e left contains offsets. Each offset indicates the
address of an instruction or a datum as an offset from the base of its logcal
segment, e.g., the statement at line 0010 produces machine language at offset
OOOOH of the CODE SEGMENT and the statement at line number 0002 produces
machine language at offset OOOOH of the DATA SEGMENT.

The third column in the annotation displays the machine language produce by
code instruction in the program.

Segment numbers: There is a good reason for not leaving the determination of
segment numbers up to the assembler. It allows programs written in 8086 assembly
language to be almost entirely relocatable. They can be loaded practically anywhere
in memory and run just as well. Program1 has to store the message "Have a nice'
,day$" somewhere in memory. It is located in the DATA SEGMENT. Since the

- I
.41

characters are stored in ASCII, therefore it will occupy 15 bytes (please note each
Assembly Language
Programming blank is also a character) in the DATA SEGMENT.

Missing offset: The xxxx in the machine liulguage for the instruction at liae 0010 is
there because the assembler does not know the DATA segment locdlon that will be
determined at loading time. The loader must supply that value, I
Program Source Code R
Each assembly language statement appears as: rn
{identifier) Keyword { {paramefer) ,) {;comment),

The element of a statement must appear in the appropriate ordef, but significance is
attached to the column in which an element begins. Each statement must end with a
carriage return, a line feed.

Keyword: A keyword is a statement that defines the nature of that statement. If the \ I

statement is a directive then the keywetd will be the title of that directive; if the
statement is a data-allocation statement the keyword will be a data definition type.
Some examples of the keywords are: SBOMENT (directive), MOV (statement) etc.

Identifiers: An identifier is a name that you apply to an item in your program that
you expect to reference. The two types of identifiers are name and label.

1. Name refers to the address of a data item such as counter, arr etc.
2. Label refers to the: address of our instruction, process or segment. For example

MArN is the label for a process as:

MAIN PROC FAR
A20: BL,45 ; defines a label A20.

Identifier can use alphabet, digit or special character but it always starts with an
alphabet.

Parameters: A parameter extends and refines the meaning that the assembler
attributes to the keyword in a statement. The number of parameters is dependent on
the Statement.

Comments: A comment is a string of a text that serves only as internal dotument
action for a program. A semicolon identifies all subsequent text in a statement as a
comment.

2.4.2 Directives

Assembly languages support a number of statements. This enables you to control the
way in which a source program assembles and list. These statements, called
directives, act only when the assembly is in progress and generate no machine-
executable code. Let us discuss some common directives.

1. List: A list directive causes the assembler to produce an annotated listing on the
printer, the video screen, a disk drive or some combination of the three. An
annotated listing shows the text of the assembly language programs, numbers of
each statement in the program and the offset associated with each instruction and
each datum. The advantage of list directive is that it produces much more
informative output.

2. HEX: The HEX directive facilitates the coding of hexadecimal values in the
body of the program. That statement directs the assembler to treat tokens in the

I~rtrc~durtion to source file that begins with a dollar sign as numeric constants in hexadeciinal Assen~hl! I .anguap,e
notation. Programmill g

PROC Directive: The code segment contains the executable code for a
program, which consists of one or more procedures defined initially with the
PROC directive and ended with the ENDP directive.

Procedure-name PROC FAR ; Beginning of Procedure
Procedure-name ENDP FAR : End Procedure

END DIRECTIVE: ENDS directive ends a segment, ENDP directive ends a
procedure and END directiveends the entire program that appears as the last
statement.

I

5. ASSUME Directive: An .EXE program uses the SS register to address the base
of stack, DS to address the base of data segment, CS to address base of the code
segment and ES register to address the base of Extra segnent. This directive tells
the assembler to correlate segment register with a segment name. For example,

I1 ASSUME SS: stack-seg-name, DS: data-seg-naine, CS: code-seg-name.

6. SEGMENT Directive: The segment directive defines the logical segment to
which subsequent instructions or data allocations statement belong. It also gives
a segment name to the base of that segment.

-

The address of every element in a 8086 assembly program must be represented
in segment - relat~ve format. That means that every address must bc expressed
in terms of a sebmlent register and an offset from the base of the segmented
addressed by that register. By defining the base of a log~cal segment, a segment
dircctive makes it possible to set a segment register to address that base and also
makes it possible to calculate the offset of each clernc~~~t 111 that segment from a
common base.

An 8056 assembly language program consists of logical scgncrlts that can be a
code segment, a stack segment, a data segment, and an extra segment.

A segment directive indicates to asscnlble all statements following it in a s~ngle
source file until an ENDS directive.

CODE SEGMENT

The logical program segmgnt is named code segment. When the linker links a
program it makes a note in the header section of the program's executable file
describing the location of the code segment when the DOS invokes the loader to
load an executable file into memory, the loader reads that note. As it loads the
program into memory, the loader also makes notes to itself of exactly where in
memory it actually places each of the program's other logical segments. As the
loader hands execution over to the program it has just loaded, it sets the CS . .
register to address the base of the segment identified by the linker as the code
segment. This renders every instruction in the code segment addressable in
segment relative terms in the form CS: xxxx.

-

The linker also assumes by default that the first instruction in the code segment
is intended to be the first instruction to be executed. That instruction will appear
in memory at an offset of OOOOH from the base of the code segment, so the linker
passes that value on to the loader by leaving an another note in the header of the
program's executable file.

43

Assembly Language
The loader sets the IP (Instruction Pointer) register to that value. This sets Q78:IP

Programming to the segment relative address of the first instruction in the progritid. I
STACK SEGMENT

8086 Microprocessor suppons the Word $tack. The staok ~egfrleht pararndtefl
tell the assembler to alert the linker that this segment st i l te~~t l f defines t h ~
program stack area, I
A program must have a stack area in that the cotnputer is continuousiy cartying
on several background operations that ate ~~mpie te l2 tfKnsparent, everl ia EM
assembly language programmer, for eltat@e, a red1 time dock. Bvery 95
milliseconds the teal time clock Ifitermpte. Btpety 53 ri'ls the CPU is ititemipted.
The CfU records the state of it9 registers and then goes about updating the
system clock. When it finishes servicing Ule system clock, it has to restore the
registers and go back to doing whatever it was doing when the interruption
occurred. All such information gets recorded in the stack. If your program has
no stack and if the real tlme clock were to pulse while the CPU is rulining your
program, there would be no way Per the CPU to And the way back t6 ysur
program when i t was through updating the clock. 0400H bafte is the default size
of allocation of stack. Please note if you have not 3pecifled the stack ~egrHent it
is automatically created,

HA SEGrnNT

It contains the data allocation statements for a program. This segment is very
useful as it shows the data organization.

Defining Types of Data

The following format is used for defining data definition:

Fonnatfor data definition:

{Name) <Directive> <expression>
Name - a program references the data item through the name although it is

Directive: Specifiing the data type of assembly.
Expression: Represent a value or evaluated to value.

The list of directives are given below:

Directive Description Number of Bytes

. Define byte 1
DW Define word 2
DD Define double word
DQ Define Quad word
DT Define 10 bytes 10 -

DUP Directive is used to duplicate the basic data definition to 'n' number of

ARMY DB 10 DUP (0)

In the above statement ARRAY is the name of the data item, which is of byte
type (DB). This array c'ontains 10 duplicate zero values; that is 10 zero values.

EQU directive is used to define a n a b to a constant

CONST EQU 20

Type of nurnb~r used in data statements can be octal, binary, haxadecimal,
de&nal ~ (i ASCII. The above statement defines a name CONST to a value 20.

Introduction to
Assembly Language

Programming

Gome alher examples ofvsing beae directives are: I
TEMP DB OlllOOlB

VPLLI DW 73414

Decimal DB 49

HEX DW 03B2A.H

; Binary value in byte operand
; named temp

; Octal value assigned to word C

; variable
; Decimal value 49 contained in

; byte variable
; Hex decimal value in word

: operand
PBCV Dj3 'EXAWL8 ; ASCII array of values.

b p Cheek Yeur lrreg~ese 1

: My should we learn assembly language?
..
... . &

.. (...'........................<.....
*

What is a segment? Write all four main segment names.
..

........................ (.,.'.. ..

.~ , . .1 r .

3. State Tn~e or False.

(a) The directive DT defines a quadword in the memory

fb) DUP directive is used to indicate if a same memory location is used by two
different variables name.

(c) EQU directive assign a name to a constant value.

(d) The maximum number of active segments at a time in 8086 can be four. .

(e) ASSUME directive specifies the physical address for the data values of

(A statement after the END directive is ignored by the assembler.

%,5 INPUT OUTPUT IN ASSEMBLY PROGRAM

A softww intempt is a call to an Interrupt servicing program located in the operating
system. Usually the input-output routine in 8086 is ~onstructed using these interrupts.

2.5.1 Interrupts

An interrupt causes intemption of an ongoing program. Some of the common
interrupts ae: keyboard, pint&, monitor, an e m r condition, trap etc.

8886 recopzes two kinds of interrupts: Hardware interrupts and Software

Hardware interrupts are generated when a peripheral Interrupt servic~ng program
A\sc111t4\ I nngu:lae
Pro<r , i~ i t~~t~: iq requests for some service A software interrupt causes a call to the operating system. It

usually is the input-output routine.

Let us discuss the software intert~~pts In more detall. A software interrupt is initiated
using the following statements:

INT number

vchitecture provides for a pack of software interrupt vectors beginning at address
QQ8Q:QOQO.

The advantage of this type QP call is that it appears static to a programmer but flexible
to a system design engineer, For example, INT OOH is a special system levzl vector
that points to the "recovery from division by zero" subroutine. If new designer come
and want to move interrupt location in memory, it adjusts the entry in the IVT vector
of interrupt OOH to a new lacatian. Thus from the system programmer point of view,
it is relatively Basy ta change the vectors under program control.

One of the most commonly used Interrupts for Input /Output is called DOS function
call. Let us discuss more about it in the next subsection:

3.5,2 DOS Funetlsn Calls (Using INT 21H)

DO9 Purpose Example
Function C3ll
AI-I = 0 1 H For reading a single To get one character input in a variable

character from keyboard in data segment you may include the
and echo it on monitor. following in the code segment:
The input value is put in MOV AH,O1
AL register. INT 21H

MOV X, AL
(Please note that interrupt call will
return value in AL which is being
transferred to variable of data segment
X. X must be byte type).

AH = 02H This function prints 8 bit To print a character let say '?' on the
data (normally ASCII) screen we may have to use following
that i s stored in DL set of commands:
register on the screen. MOV AH, 02H;

MOV DL, '?'
INT 21H

AH = O8H This is an input function Same example as 01 can be used only
for inputting one difference in this case would be that t e
character. This is same as input character wouldn't get displayed
AH = 0 1 fi functions with MOV AH, O8H
the only difference that INT 21H
value does not get MOV X, AL
displayed on the screen.

h
AH = 09H This program outputs a To print a string "hello world" followed

string whose offset is by a carriage return (control character)
stored in PX register and we may have to use the following
that is terminated using a assembly program segment.
$ character. One can print
newline, tab character
also,

Introduction to
Assembly Languagl:

Programmin;!

Assembly Language
Programming

DATA SEGMENT
STRING DB 'HELLO WORLD', CR, '$'

CODE SEGMENT

MOV AX, DATA

MOV DX, OFFSET STRING

Some examples of Input

(i) Input a single ASCII character into BL register without echo on screen

CODE SEGMENT

MOV AH, 08H ; Function 08H
INT 21H ; The character input in AL is
MOV BL, AL ; transfer to BL

CODE ENDS

(ii) Input a Single Digit for example (0,1,2,3,4,5,6,7,8,9)

CODE SEGMENT
...

; Read a single digit in BL register with echo. No error check in the Program
MOV AH, OlH

INT 21H
; Assuming that the value entered is digit, then its ASCII will be stored in AL.
; Suppose the key pressed is 1 then ASCII '3 1' is stored in the AL. To get the
; digit 1 in AL subtract the ASCII value '0' from the AL register.
; Here it store 0 as ASCII 30,
; 1 as31, 2as32 9 as39
; to store 1 in memory subtract 30 to get 3 1 - 30 = 1

MOV BL, AL
SUB BL, ' 0' ; ' 0' is digit 0 ASCII

; OR
SUB BL, 30H

; Now BL contain the single digit 0 to 9
; The only code missing here is to check whether the input is in the specific
; range.
...
CODE ENDS.

(iii) Input'numbers like (10, 11 99)

; If we want to store 39, it is actually 30 + 9
; and it is 3 x 10 + 9
; to input#is value through keyboard, Qst we input the tenth digit e.g., 3 and

introdrrrtio~l t n
'.wembl> 1,:ingoagr

MOV AH, 08H PI oyr6lwrni~!p,

INT 21H
MOV BL, AI, ; If we have input 39 thcn, HI, will ? h t 1-iwe chrlracicr

; 3, we can convert jt to 3 using preiyious logic rhal is 3.3 30 , 5 ,
SUB BL, '0'
MUL BL, 4 H ; To gct 30 Multiply it by 19.

; Now 9 L Store 30
; Input ancitber digli from keyboard

MOV AH, 08H
TNT 21H;
MOV DL, AL ;(Store AL in DL
SUB DL, '0' ; (39 - 30) -9.

; Now BL contains the value: 30 and DL has the value 9 add thcm and gct the
; required numbers.

ADD BL,DL
; Now. BL store 39. We have 2 digit value in BL.

Let u:; try to summarize these segments as:

COD-E SEGMENT

MOV AX, DATA
MCIV DS, AX -

; read first digit from keyboard
MOV AH, 08
INT 21H
MOV BL, AL
SUB BL, '0'
n/llJL BL, 10H

; read second digit from keyboard
MOV AH,08H
IST 21H
MOV DL, AL
SUB DL, '0'

; DI,=9 AND BL-30
SUM BL,DL

; now BL store 39
CO~gE ENDS.

Note: Bor lerplate code is the code that is present more or less in the same form in
every assembly language program.

CODE SI!GMENT

MOV AH, OAH ; Move 04 to AH regster
; BUFF must be defined in-data segment.

CODE ENDS
DATA SEGMENT

I3CTFF ' DB 50 ; max length of string,
; including CR, 50 characters

DB ? ; actual length of string not known at present
DB 50 DUP(0) ; buffer having 0 values

DATA ENDS.

Assembly Langmge
Programming The 2bove DA'rA~egrnent creates an input buffer %BUFF of maximum 50 charactets,

On mput of data 'JAIN' followed by enter data would be stored as:

150 14 [J] A] I I N I # 1

Examples of Display on Video Monitor

CL) D~sp'la~fing a single character

; display contents of BL register (assume that it has a single chatacter)
MOV AH, 02H
MOV DL, BL.
MT 21 H.

Here data from BL is moved to DL and then data display on monitor function is called
which displays the contents of DL register,

(2) Displaying a single digit (0 to 9)

Assume that a value 5 is stored in DL register, then to output BL as ASCII value add
character '0' to it

ADD BL, '0'
MOV AH, 02H
MOV DL, BL
MT 21H

(3) Displaying a number (10 to 99)

Assuming that the two digit number 59 is stored as numbet 5 in BH and number 9 in
BL;r to convert them to equivalent ASCII we w111 add '0' to each of them.

.ADD BH, '0'
ADD BL, '0'
MOV AH, OZH
MOV DL, BH
INT 21H
MOV DL, BL
MT 21H

(4) Displaying a siring

MOV AH, 09H
MOV DX, OFFSET BUFF
INT 21H

Here data in input buffer stored in'data segment is going to be displayed on the
monitor.

A complete program:

Input a letter fiom keyboard and respond. "The letter you typed is " .

: CODE SEGMENT
I set the DS register

M8V AX, DATA

. -
Introduction to

Assembly Languaget
~ r o ~ r a m m i a ~ (

Al)1> hb , SUM:! . Add rhe 2'"' nlliitber tc. ~t
iLIOv KESC;I,?', Al . Storz the :t?suIt ~n locatior~ RESUL'i;
TtCl , Al.,, 01 ; Rotate carry into LSB

AN13 A I . , !~OG0000 1 B ; Mask out all but LSB
MOW CARRY, AL ; Store the carry result
MOV AX,4COOh

INT 21h

NOMl DB 1511 ; First number stored licre

NljM2 DB 2011 ; Second number sturcif here

RESULT DB ? ; Put sum here

; Put any cany here

EN11 S'TAl3.T

These programs are stored on a disk with an extension .colrl. h C'OM program
requires less space on disk rather tha~i equivalent EXE program. At nrn-time the C(1M
program places the stack auton~atically at the end of the segment, so they use 3: least

2.6.2 EXE Programs

,411 IrXE program is stored on disk with extension .exc. EXE progrruns are longer than
the C'OM programs, as each EXE program is associated with an EXE header of 256
bytes followed by a load nlodule containing the progranl itself. The BXE heade:
contains information for the operating system to calculate the addresses of segments
and other components. U7e will not go into such details in this unit.

'l'he load module of EXE program consists of up to 64K segments, although at the
most only four segments may be active at any time. The segments may be of variable
size, with maximun~ size being 64K.

Wt: will write only EXE programs for the followii~g reasotls:

e EXE programs are better suited for debugging.

e EXE-fonnat assembler programs are more easily converted into subroutines for
high-level languages.

e EXE programs are more easily relocatable. Because, there is no OKG stater~ent,
forcing the proganl to be loaded from a specific address.

e 'To fully use multitasking operating system, programs must be able 10 share
computer memory and resources. An EXE program is easily able to do this.

An cxa111plr of equivalent EXB program for the COM prograni is:

; ABST'ItAC.:1' this program adds 2 $-bit nunibers in the men~ory locations

NUMl and NUM2. The result is stored in the

meniory location RESULT. If there was a carry

from the addition it will be stored as 0000 0001 in

the location CARRY
; REGISTERS Uses CS, DS, AX
DATA SEGMENT

\

NUMI DL3 15h ; First number

NUM2 DB 20h ; Second number

RESUI,T DB ? ; Put sum here Introduction to
.4ssernbly Langua;:e

CARRY DB ? ; Put any carry here Programmi~~g

DATA END'S

+ CODE SEGIrlENT
ASSUME CS:CODE, DS:DATA

STARTtMOV AX, DATA ; Initialise data segment
MOV DS, AX ; register using AX
MOV AL, NUMl ; Bring the first number in hL

ADD AL, NUM2 ; Add the 2"" number to AI,
MOV RESULT, AL ; Store the result
RCL .4L, 01 ; Rotate c m y into Least Significant Bit (LSB)
AND AL, OOOOOOOl B ; Mask out all but 1,SB

MOV CARRY, AL ; Store the carry
MOV AX, 4C00h ; Terminate to DOS
INT :I l h

CODE ENDS
ENE START

2.7 H[OW TO WRITE GOOD ASSEMBLY
P'?',OGRAMS

Now that we have seen all the details of assembly language programming, let us
discuss thr: art of writing assembly programs in brief.

Preparation of writing the program

1. Writr: an algorithm for your program closer to assembly language. For example,.
the algorithm for preceding program would be:

get NUM 1
add NUM2
put sum into memory at RESULT
position cany bit in LSB of byte

mask off upper seven bits
store the result in the CARRY location.

2. Spe1;ify the input and output required.

input required - two 8-bit numbers
output required - an 8-bit result and a 8-.bit cany in memory.

3. Study the instruction set carefully. This step helps in specifying,the available
insf ructions and their format and constraints. For example, the segment registers
cannot be directly initialized by a menlory variabld:'.~nstead we have to first move
the offset for segment into a register, and then move the contents of register to the
segment register.

You can exit to DOS, by using interrupt routine 21h, with function 4Ch, placed in AH

I

It Is a nice practice to flrst F Q ~ B your program on paper, and use comments liberally.
Assembly Langusgt
Pragrammt~q Thig makes programming easier, and alss helps y ~ u understa~d your propanl later

Fleaae note that the nmber sf c o m ~ n t s d~ nat affect the size of the p rogm.

After the progrw dsvelopment, you may assembl~ it usins an ilssembler and correct
it for errors, finally areating exe file for execution.

w Check Your Progress 2

S$te Tnle or Fqlqe -

1. For input/ putp~lt QQ Intel 8086/gQ@$ machine wnnins PP DO$
requirg speciql routines to be w # e n Gy the assembly programyep.

2. Intel 8086 proGessor rec~pisgs snly fie software intewpts.

3. P$T instwctlp~ rq pfect calls a subrowtine, which is ~dentifigd by 9
nprnber.

4. Intempt YFG~QF takls IVT stclres t h ~ intempt bandlirlg p r o ~ m s .

5. TNT alfi is a PC)8 h c t i o n call.

6. INT alp will aurput a chara~tn ~q the WQP~?@~ if N j *psler
~ a o t a b s 03.

8. TQ perfppq find exit to DQ5 we mpst psp furl~tian 4CH with
heIMT 2lfi.

9. Notepad is an editor package.

10. Linking is required to link several segments of a single
assembly program.

1 I . Debugger helps in removing the syntax errors of a program.

12. CQM program 13 loaded at the a" locatiop in the memow.

13. The size of COM program should not: exceed 64K.

14. A COM prggram is longer than an EXE program.

16. EXE p r o g f p yplaigs a F~srP9 w44p1et wki~h i~ V S F ~ a- \ h~ DO4 f$p
calfd?ts: SegF?t 9 (y f ~ f A@.-

Introduction to
Assembly Lan p a g e

Progranrming

