

20

Structures, Pointers
and File Handling UNIT 10 POINTERS

Structure

10.0 Introduction
10.1 Objectives
10.2 Pointers and their Characteristics
10.3 Address and Indirection Operators
10.4 Pointer Type Declaration and Assignment
 10.4.1 Pointer to a Pointer
 10.4.2 Null Pointer Assignment
10.5 Pointer Arithmetic
10.6 Passing Pointers to Functions
 10.6.1 A Function Returning More than One Value
 10.6.2 Function Returning a Pointer
10.7 Arrays and Pointers
10.8 Array of Pointers
10.9 Pointers and Strings
10.10 Summary
10.11 Solutions / Answers
10.12 Further Readings

10.0 INTRODUCTION

If you want to be proficient in the writing of code in the C programming language,
you must have a thorough working knowledge of how to use pointers. One of those
things, beginners in C find difficult is the concept of pointers. The purpose of this
unit is to provide an introduction to pointers and their efficient use in the C
programming. Actually, the main difficulty lies with the C’s pointer terminology than
the actual concept.

C uses pointers in three main ways. First, they are used to create dynamic data
structures: data structures built up from blocks of memory allocated from the heap at
run-time. Second, C uses pointers to handle variable parameters passed to functions.
And third, pointers in C provide an alternative means of accessing information stored
in arrays, which is especially valuable when you work with strings.

A normal variable is a location in memory that can hold a value. For example, when
you declare a variable i as an integer, four bytes of memory is set aside for it. In your
program, you refer to that location in memory by the name i. At the machine level,
that location has a memory address, at which the four bytes can hold one integer value.
A pointer is a variable that points to another variable. This means that it holds the
memory address of another variable. Put another way, the pointer does not hold a
value in the traditional sense; instead, it holds the address of another variable. It points
to that other variable by holding its address.

Because a pointer holds an address rather than a value, it has two parts. The pointer
itself holds the address. That addresses points to a value. There is the pointer and the
value pointed to. As long as you’re careful to ensure that the pointers in your
programs always point to valid memory locations, pointers can be useful, powerful,
and relatively trouble-free tools.

We will start this unit with a basic introduction to pointers and the concepts
surrounding pointers, and then move on to the three techniques described above.
Thorough knowledge of the pointers is very much essential for your future courses
like the datastructures, design and analysis of algorithms etc..

21

Pointers

10.1 OBJECTIVES

After going through this unit you should be able to:

• understand the concept and use pointers;
• address and use of indirection operators;
• make pointer type declaration, assignment and initialization;
• use null pointer assignment;
• use the pointer arithmetic;
• handle pointers to functions;
• see the underlying unit of arrays and pointers; and
• understand the concept of dynamic memory allocation.

10.2 POINTERS AND THEIR CHARACTERISTICS

Computer’s memory is made up of a sequential collection of storage cells called
bytes. Each byte has a number called an address associated with it. When we declare
a variable in our program, the compiler immediately assigns a specific block of
memory to hold the value of that variable. Since every cell has a unique address, this
block of memory will have a unique starting address. The size of this block depends
on the range over which the variable is allowed to vary. For example, on 32 bit PC’s
the size of an integer variable is 4 bytes. On older 16 bit PC’s integers were 2 bytes.
In C the size of a variable type such as an integer need not be the same on all types of
machines. If you want to know the size of the various data types on your system,
running the following code given in the Example 10.1 will give you the information.

Example 10.1

Write a program to know the size of the various data types on your system.

include <stdio.h>
main()
{
 printf (“n Size of a int = %d bytes”, sizeof (int));
 printf (“\n Size of a float = %d bytes”, sizeof (float));
 printf (“\n Size of a char = %d bytes”, sizeof (char));
}

OUTPUT

Size of int = 2 bytes
Size of float = 4 bytes
Size of char = 1 byte

An ordinary variable is a location in memory that can hold a value. For example,
when you declare a variable num as an integer, the compiler sets aside 2 bytes of
memory (depends up the PC) to hold the value of the integer. In your program, you
refer to that location in memory by the name num. At the machine level that location
has a memory address.

int num = 100;

We can access the value 100 either by the name num or by its memory address. Since
addresses are simply digits, they can be stored in any other variable. Such variables
that hold addresses of other variables are called Pointers. In other words, a pointer is

22

Structures, Pointers
and File Handling

simply a variable that contains an address, which is a location of another variable in
memory. A pointer variable “points to” another variable by holding its address.
Since a pointer holds an address rather than a value, it has two parts. The pointer
itself holds the address. That addresses points to a value. There is a pointer and the
value pointed to. This fact can be a little confusing until you get comfortable with it,
but once you get familiar with it, then it is extremely easy and very powerful. One
good way to visualize this concept is to examine the figure 10.1 given below:

num

ch

temp

ptr1

ptr2

 Figure 10.1: Concept of pointer variables

Let us see the important features of the pointers as follows:

Characteristic features of Pointers:

With the use of pointers in programming,

i. The program execution time will be faster as the data is manipulated with the

help of addresses directly.
ii. Will save the memory space.

iii. The memory access will be very efficient.
iv. Dynamic memory is allocated.

10.3 THE ADDRESS AND INDIRECTION OPERATORS

Now we will consider how to determine the address of a variable. The operator that is
available in C for this purpose is “&” (address of) operator. The operator & and the
immediately preceding variable returns the address of the variable associated with it.
C’s other unary pointer operator is the “*”, also called as value at address or
indirection operator. It returns a value stored at that address. Let us look into the
illustrative example given below to understand how they are useful.

Example 10.2

Write a program to print the address associated with a variable and value
stored at that address.

/* Program to print the address associated with a variable and value stored at that
address*/

23

Pointers
include <stdio.h>
main()
{
 int qty = 5;
 printf ("Address of qty = %u\n",&qty);
 printf ("Value of qty = %d \n",qty);
 printf("Value of qty = %d",*(&qty));
 }

OUTPUT

Address of qty = 65524
Value of qty = 5
Value of qty = 5

Look at the printf statement carefully. The format specifier %u is taken to increase
the range of values the address can possibly cover. The system-generated address of
the variable is not fixed, as this can be different the next time you execute the same
program. Remember unary operator operates on single operands. When & is
preceded by the variable qty, has returned its address. Note that the & operator can
be used only with simple variables or array elements. It cannot be applied to
expressions, constants, or register variables.

Observe the third line of the above program. *(&qty) returns the value stored at
address 65524 i.e. 5 in this case. Therefore, qty and *(&qty) will both evaluate to 5.

10.4 POINTER TYPE DECLARATION AND
ASSIGNMENT

We have seen in the previous section that &qty returns the address of qty and this
address can be stored in a variable as shown below:

ptr = &qty;

In C, every variable must be declared for its data type before it is used. Even this
holds good for the pointers too. We know that ptr is not an ordinary variable like any
integer variable. We declare the data type of the pointer variable as that of the type of
the data that will be stored at the address to which it is pointing to. Since ptr is a
variable, which contains the address of an integer variable qty, it can be declared as:

int *ptr;

where ptr is called a pointer variable. In C, we define a pointer variable by preceding
its name with an asterisk(*). The “*” informs the compiler that we want a pointer
variable, i.e. to set aside the bytes that are required to store the address in memory.
The int says that we intend to use our pointer variable to store the address of an
integer. Consider the following memory map:

 ptr qty Variable

 Value

 65522 65524 Address

 100

 65524

Let us look into an example given below:

24

Structures, Pointers
and File Handling

Example 10.3

/* Program below demonstrates the relationships we have discussed so far */

include <stdio.h>
main()
{
 int qty = 5;
 int *ptr; /* declares ptr as a pointer variable that points to an integer variable
*/
 ptr = &qty; /* assigning qty’s address to ptr -> Pointer Assignment */

 printf ("Address of qty = %u \n", &qty);
 printf ("Address of qty = %u \n", ptr);
 printf ("Address of ptr = %u \n", &ptr);
 printf ("Value of ptr = %d \n", ptr);
 printf ("Value of qty = %d \n", qty);
 printf ("Value of qty = %d \n", *(&qty));
 printf ("Value of qty = %d", *ptr);
}

OUTPUT

Address of qty = 65524
Address of ptr = 65522
Value of ptr = 65524
Value of qty = 5
Value of qty = 5
Value of qty = 5

Try this as well:

Example 10.4

/* Program that tries to reference the value of a pointer even though the pointer is
uninitialized */

include <stdio.h>
main()
{
 int *p; /* a pointer to an integer */
 *p = 10;
 printf(“the value is %d”, *p);
 printf(“the value is %u”,p);
}

This gives you an error. The pointer p is uninitialized and points to a random location
in memory when you declare it. It could be pointing into the system stack, or the
global variables, or into the program’s code space, or into the operating system.
When you say *p=10; the program will simply try to write a 10 to whatever random
location p points to. The program may explode immediately. It may subtly corrupt
data in another part of your program and you may never realize it. Almost always, an
uninitialized pointer or a bad pointer address causes the fault.

This can make it difficult to track down the error. Make sure you initialize all
pointers to a valid address before dereferencing them.

25

Pointers Within a variable declaration, a pointer variable can be initialized by assigning it the
address of another variable. Remember the variable whose address is assigned to the
pointer variable must be declared earlier in the program. In the example given below,
let us assign the pointer p with an address and also a value 10 through the *p.

Example 10.5

Let us say,

int x; /* x is initialized to a value 10*/
p = &x; /* Pointer declaration & Assignment */
*p=10;

Let us write the complete program as shown below:

include <stdio.h>
main()
{
 int *p; /* a pointer to an integer */
 int x;
 p = &x;
 *p=10;
 printf("The value of x is %d",*p);
 printf("\nThe address in which the x is stored is %d",p);
}

OUTPUT

The value of x is 10
The address in which the x is stored is 52004

This statement puts the value of 20 at the memory location whose address is the value
of px. As we know that the value of px is the address of x and so the old value of x is
replaced by 20. This is equivalent to assigning 20 to x. Thus we can change the value
of a variable indirectly using a pointer and the indirection operator.

10.4.1 Pointer to a Pointer

The concept of pointer can be extended further. As we have seen earlier, a pointer
variable can be assigned the address of an ordinary variable. Now, this variable itself
could be another pointer. This means that a pointer can contain address of another
pointer. The following program will makes you the concept clear.

Example 10.6

/* Program that declares a pointer to a pointer */

include<stdio.h>
main()
{
 int i = 100;
 int *pi;
 int **pii;
 pi = &i;
 pii = π

 printf ("Address of i = %u \n", &i);

26

Structures, Pointers
and File Handling

 printf ("Address of i = %u \n", pi);
 printf ("Address of i = %u \n", *pii);
 printf ("Address of pi = %u \n", &pi);
 printf ("Address of pi = %u \n", pii);
 printf ("Address of pii = %u \n", &pii);
 printf ("Value of i = %d \n", i);
 printf ("Value of i = %d \n", *(&i));
 printf ("Value of i = %d \n", *pi);
 printf ("Value of i = %d", **pii);
}

OUTPUT

Address of i = 65524
Address of i = 65524
Address of i = 65524
Address of pi = 65522
Address of pi = 65522
Address of pii = 65520

Value of i = 100
Value of i = 100
Value of i = 100
Value of i = 100

Consider the following memory map for the above shown example:

 pii pi i Variable

 Value

 65520 65522 65524 Address

 100 65524 65522

10.4.2 Null Pointer Assignment

It does make sense to assign an integer value to a pointer variable. An exception is an
assignment of 0, which is sometimes used to indicate some special condition. A
macro is used to represent a null pointer. That macro goes under the name NULL.
Thus, setting the value of a pointer using the NULL, as with an assignment statement
such as ptr = NULL, tells that the pointer has become a null pointer. Similarly, as
one can test the condition for an integer value as zero or not, like if (i == 0), as well
we can test the condition for a null pointer using if (ptr == NULL) or you can even
set a pointer to NULL to indicate that it’s no longer in use. Let us see an example
given below.

Example 10.7

include<stdio.h>
define NULL 0
main()
{
 int *pi = NULL;
 printf(“The value of pi is %u”, pi);
}

27

Pointers OUTPUT

The value of pi is 0

Check Your Progress 1

1. How is a pointer variable being declared? What is the purpose of data type

included in the pointer declaration?

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

2. What would be the output of following programs?

 (i) void main()
 {

 int i = 5;
 printf ("Value of i = %d Address of i = %u", i, &i);
 &i = 65534;
 printf ("\n New value of i = %d New Address of i = %u", i, &i);

 }

 (ii) void main()
 {

 int *i, *j;
 j = i * 2;
 printf ("j = %u", j);
 }

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

3. Explain the effect of the following statements:

(i) int x = 10, *px = &x;

(ii) char *pc;

(iii) int x;
 void *ptr = &x;
 *(int *) ptr = 10;

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

10.5 POINTER ARITHMETIC

Pointer variables can also be used in arithmetic expressions. The following
operations can be carried out on pointers:

1. Pointers can be incremented or decremented to point to different locations like

28

Structures, Pointers
and File Handling

 ptr1 = ptr2 + 3;
 ptr ++;
 -- ptr;

However, ptr++ will cause the pointer ptr to point the next address value of its type.
For example, if ptr is a pointer to float with an initial value of 65526, then after the
operation ptr ++ or ptr = ptr+1, the value of ptr would be 65530. Therefore, if we
increment or decrement a pointer, its value is increased or decreased by the length of
the data type that it points to.

2. If ptr1 and ptr2 are properly declared and initialized pointers, the following

operations are valid:

 res = res + *ptr1;
 *ptr1 = *ptr2 + 5;
 prod = *ptr1 * *ptr2;
 quo = *ptr1 / *ptr2;

Note that there is a blank space between / and * in the last statement because if you
write /* together, then it will be considered as the beginning of a comment and the
statement will fail.

3. Expressions like ptr1 == ptr2, ptr1 < ptr2, and ptr2 != ptr1 are permissible

provided the pointers ptr1 and ptr2 refer to same and related variables. These
comparisons are common in handling arrays.

Suppose p1 and p2 are pointers to related variables. The following operations cannot
work with respect to pointers:

1. Pointer variables cannot be added. For example, p1 = p1 + p2 is not valid.

2. Multiplication or division of a pointer with a constant is not allowed. For

example, p1 * p2 or p2 / 5 are invalid.

3. An invalid pointer reference occurs when a pointer’s value is referenced even

though the pointer doesn’t point to a valid block. Suppose p and q are two
pointers. If we say, p = q; when q is uninitialized. The pointer p will then
become uninitialized as well, and any reference to *p is an invalid pointer
reference.

10.6 PASSING POINTERS TO FUNCTIONS

As we have studied in the FUNCITONS that arguments can generally be passed to
functions in one of the two following ways:

1. Pass by value method
2. Pass by reference method

In the first method, when arguments are passed by value, a copy of the values of
actual arguments is passed to the calling function. Thus, any changes made to the
variables inside the function will have no effect on variables used in the actual
argument list.

However, when arguments are passed by reference (i.e. when a pointer is passed as
an argument to a function), the address of a variable is passed. The contents of that
address can be accessed freely, either in the called or calling function. Therefore, the
function called by reference can change the value of the variable used in the call.

29

Pointers
Here is a simple program that illustrates the difference.

Example 10.8

Write a program to swap the values using the pass by value and pass by reference
methods.

 /* Program that illustrates the difference between ordinary arguments, which are
passed by value, and pointer arguments, which are passed by reference */

include <stdio.h>
main()
{
 int x = 10;
 int y = 20;
 void swapVal (int, int); /* function prototype */
 void swapRef (int *, int *); /*function prototype*/
 printf("PASS BY VALUE METHOD\n");
 printf ("Before calling function swapVal x=%d y=%d",x,y);
 swapVal (x, y); /* copy of the arguments are passed */
 printf ("\nAfter calling function swapVal x=%d y=%d",x,y);
 printf("\n\nPASS BY REFERENCE METHOD");
 printf ("\nBefore calling function swapRef x=%d y=%d",x,y);
 swapRef (&x,&y); /*address of arguments are passed */
 printf("\nAfter calling function swapRef x=%d y=%d",x,y);
}

/* Function using the pass by value method*/
void swapVal (int x, int y)
{
 int temp;
 temp = x;
 x = y;
 y = temp;
 printf ("\nWithin function swapVal x=%d y=%d",x,y);
 return;
}

/*Function using the pass by reference method*/
void swapRef (int *px, int *py)
{
 int temp;
 temp = *px;
 *px = *py;
 *py = temp;
 printf ("\nWithin function swapRef *px=%d *py=%d",*px,*py);
 return;
}

OUTPUT

PASS BY VALUE METHOD
Before calling function swapVal x=10 y=20
Within function swapVal x=20 y=10
After calling function swapVal x=10 y=20

30

Structures, Pointers
and File Handling

PASS BY REFERENCE METHOD
Before calling function swapRef x=10 y=20
Within function swapRef *px=20 *py=10
After calling function swapRef x=20 y=10

This program contains two functions, swapVal and swapRef.

In the function swapVal, arguments x and y are passed by value. So, any changes to
the arguments are local to the function in which the changes occur. Note the values of
x and y remain unchanged even after exchanging the values of x and y inside the
function swapVal.

Now consider the function swapRef. This function receives two pointers to integer
variables as arguments identified as pointers by the indirection operators that appear
in argument declaration. This means that in the function swapRef, arguments x and y
are passed by reference. So, any changes made to the arguments inside the function
swapRef are reflected in the function main(). Note the values of x and y is
interchanged after the function call swapRef.

10.6.1 A Function returning more than one value

Using call by reference method we can make a function return more than one value at
a time, which is not possible in the call by value method. The following program will
makes you the concept very clear.

Example 10.9

Write a program to find the perimeter and area of a rectangle, if length and breadth
are given by the user.

/* Program to find the perimeter and area of a rectangle*/

#include <stdio.h>
void main()
{
float len,br;
float peri, ar;
void periarea(float length, float breadth, float *, float *);
printf("\nEnter the length and breadth of a rectangle in metres: \n");
scanf("%f %f",&len,&br);
periarea(len,br,&peri,&ar);
printf("\nPerimeter of the rectangle is %f metres", peri);
printf("\nArea of the rectangle is %f sq. metres", ar);
}

void periarea(float length, float breadth, float *perimeter, float *area)
{
*perimeter = 2 * (length +breadth);
*area = length * breadth;
}

OUTPUT

Enter the length and breadth of a rectangle in metres:
23.0 3.0
Perimeter of the rectangle is 52.000000 metres
Area of the rectangle is 69.000000 sq. metres

31

Pointers Here in the above program, we have seen that the function periarea is returning two
values. We are passing the values of len and br but, addresses of peri and ar. As we
are passing the addresses of peri and ar, any change that we make in values stored at
addresses contained in the variables *perimeter and *area, would make the change
effective even in main() also.

10.6.2 Function returning a pointer

A function can also return a pointer to the calling program, the way it returns an int, a
float or any other data type. To return a pointer, a function must explicitly mention in
the calling program as well as in the function prototype. Let’s illustrate this with an
example:

Example: 10.10

Write a program to illustrate a function returning a pointer.

/*Program that shows how a function returns a pointer */

include<stdio.h>

void main()
{
 float *a;
 float *func(); /* function prototype */
 a = func();
 printf ("Address = %u", a);
}
float *func()
{
 float r = 5.2;
 return (&r);
}

OUTPUT

Address = 65516

This program only shows how a function can return a pointer. This concept will be
used later while handling arrays.

Check Your Progress 2

1. Tick mark (√)whether each of the following statements are true or false.

(i) An integer is subtracted from a pointer variable. True False

(ii) Pointer variables can be compared. True False

(iii) Pointer arguments are passed by value. True False

(iv) Value of a local variable in a function can be
 changed by another function. True False

(v) A function can return more than one value. True False

(vi) A function can return a pointer. True False

32

Structures, Pointers
and File Handling

10.7 ARRAYS AND POINTERS

Pointers and arrays are so closely related. An array declaration such as int arr[5]
will lead the compiler to pick an address to store a sequence of 5 integers, and arr is a
name for that address. The array name in this case is the address where the sequence
of integers starts. Note that the value is not the first integer in the sequence, nor is it
the sequence in its entirety. The value is just an address.

Now, if arr is a one-dimensional array, then the address of the first array element can
be written as &arr[0] or simply arr. Moreover, the address of the second array
element can be written as &arr[1] or simply (arr+1). In general, address of array
element (i+1) can be expressed as either &arr[i] or as (arr+ i). Thus, we have two
different ways for writing the address of an array element. In the latter case i.e,
expression (arr+ i) is a symbolic representation for an address rather than an
arithmetic expression. Since &arr[i] and (ar+ i) both represent the address of the ith

element of arr, so arr[i] and *(ar + i) both represent the contents of that address i.e.,
the value of ith element of arr.

Note that it is not possible to assign an arbitrary address to an array name or to an
array element. Thus, expressions such as arr, (arr+ i) and arr[i] cannot appear on
the left side of an assignment statement. Thus we cannot write a statement such as:

&arr[0] = &arr[1]; /* Invalid */

However, we can assign the value of one array element to another through a pointer,
for example,

ptr = &arr[0]; /* ptr is a pointer to arr[0] */
arr[1] = *ptr; /* Assigning the value stored at address to arr[1] */

Here is a simple program that will illustrate the above-explained concepts:

Example 10.11

/* Program that accesses array elements of a one-dimensional array using pointers */

include<stdio.h>
main()
{

 int arr[5] = {10, 20, 30, 40, 50};
 int i;

 for (i = 0; i < 5; i++)
 {
 printf ("i=%d\t arr[i]=%d\t *(arr+i)=%d\t", i, arr[i], *(arr+i));
 printf ("&arr[i]=%u\t arr+i=%u\n", &arr[i], (arr+i)); }
 }

OUTPUT:

i=0 arr[i]=10 *(arr+i)=10 &arr[i]=65516 arr+i=65516
i=1 arr[i]=20 *(arr+i)=20 &arr[i]=65518 arr+i=65518
i=2 arr[i]=30 *(arr+i)=30 &arr[i]=65520 arr+i=65520
i=3 arr[i]=40 *(arr+i)=40 &arr[i]=65522 arr+i=65522
i=4 arr[i]=50 *(arr+i)=50 &arr[i]=65524 arr+i=65524

33

Pointers
Note that i is added to a pointer value (address) pointing to integer data type (i.e., the
array name) the result is the pointer is increased by i times the size (in bytes) of
integer data type. Observe the addresses 65516, 65518 and so on. So if ptr is a char
pointer, containing addresses a, then ptr+1 is a+1. If ptr is a float pointer, then ptr+
1 is a+ 4.

Pointers and Multidimensional Arrays

C allows multidimensional arrays, lays them out in memory as contiguous locations,
and does more behind the scenes address arithmetic. Consider a 2-dimensional array.

int arr[3][3] = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}};

The compiler treats a 2 dimensional array as an array of arrays. As you know, an
array name is a pointer to the first element within the array. So, arr points to the first
3-element array, which is actually the first row (i.e., row 0) of the two-dimensional
array. Similarly, (arr + 1) points to the second 3-element array (i.e., row 1) and so
on. The value of this pointer, *(arr + 1), refers to the entire row. Since row 1 is a one-
dimensional array, (arr + 1) is actually a pointer to the first element in row 1. Now
add 2 to this pointer. Hence, (*(arr + 1) + 2) is a pointer to element 2 (i.e., the third
element) in row 1. The value of this pointer, *(*(arr + 1) + 2), refers to the element
in column 2 of row 1. These relationships are illustrated below:

 arr First 1-d array 1 2 3

 y
(arr+1) Second 1-d array

(arr + 2) Third 1-d array

 *(arr + 2) *(*(arr+2) + 2)

10.8 ARRAY OF POINTERS

The way there can be an array of integers, or an array of float numbers, similarly,
there can be array of pointers too. Since a pointer contains an address, an array of
pointers would be a collection of addresses. For example, a multidimensional array
can be expressed in terms of an array of pointers rather than a pointer to a group of
contiguous arrays.

 4 5 6

 7 8 9

Two-dimensional array can be defined as a one-dimensional array of integer pointers
by writing:

int *arr[3];

rather than the conventional array definition,

int arr[3][5];

Similarly, an n-dimensional array can be defined as (n-1)-dimensional array of
pointers by writing

data-type *arr[subscript 1] [subscript 2]…. [subscript n-1];

34

Structures, Pointers
and File Handling

The subscript1, subscript2 indicate the maximum number of elements associated with
each subscript.

Example 10.12

Write a program in which a two-dimensional array is represented as an array of
integer pointers to a set of single-dimensional integer arrays.

/* Program calculates the difference of the corresponding elements of two table of
integers */

include <stdio.h>
include <stdlib.h>
define MAXROWS 3
void main()
{
 int *ptr1[MAXROWS], *ptr2 [MAXROWS], *ptr3 [MAXROWS];
 int rows, cols, i, j;
 void inputmat (int *[], int, int);

void dispmat (int *[], int, int);
void calcdiff (int *[], int *[], int *[], int, int);

 printf ("Enter no. of rows & columns \n");
 scanf ("%d%d", &rows, &cols);

 for (i = 0; i < rows; i++)
 {
 ptr1[i] = (int *) malloc (cols * sizeof (int));
 ptr2[i] = (int *) malloc (cols * sizeof (int));
 ptr3[i] = (int *) malloc (cols * sizeof (int));
 }

 printf ("Enter values in first matrix \n");
 inputmat (ptr1, rows, cols);
 printf ("Enter values in second matrix \n");
 inputmat (ptr2, rows, cols);
 calcdiff (ptr1, ptr2, ptr3, rows, cols);
 printf ("Display difference of the two matrices \n");
 dispmat (ptr3, rows, cols);
 }

 void inputmat (int *ptr1[MAXROWS], int m, int n)
 {
 int i, j;
 for (i = 0; i < m; i++)
 {
 for (j = 0; j < n; j++)
 {
 scanf ("%d", (*(ptr1 + i) + j));
 }
 }
 return;
 }

 void dispmat (int *ptr3[MAXROWS], int m, int n)
 {
 int i, j;

35

Pointers for (i = 0; i < m; i++)
 {
 for (j = 0; j < n; j++)
 {
 printf ("%d ", *(*(ptr3 + i) + j));
 }
 printf("\n");
 }
 return;
 }

 void calcdiff (int *ptr1[MAXROWS], int *ptr2 [MAXROWS],
 int *ptr3[MAXROWS], int m, int n)
 {
 int i, j;
 for (i = 0; i < m; i++)
 {
 for (j = 0; j < n; j++)
 {
 ((ptr3 + i) + j) = *(*(ptr1 + i) + j) - *(*(ptr2 + i) + j);
 }
 }
 return;
 }

OUTPUT

Enter no. of rows & columns
3 3
Enter values in first matrix
2 6 3
5 9 3
1 0 2
Enter values in second matrix
3 5 7
2 8 2
1 0 1
Display difference of the two matrices
-1 1 -4
 3 1 1
 0 0 1

In this program, ptr1, ptr2, ptr3 are each defined as an array of pointers to integers.
Each array has a maximum of MAXROWS elements. Since each element of ptr1,
ptr2, ptr3 is a pointer, we must provide each pointer with enough memory for each
row of integers. This can be done using the library function malloc included in
stdlib.h header file as follows:

ptr1[i] = (int *) malloc (cols * sizeof (int));

This function reserves a block of memory whose size (in bytes) is equivalent to cols
* sizeof(int). Since cols = 3, so 3 * 2 (size of int data type) i.e., 6 is allocated to each
ptr1[1], ptr1[2] and ptr1[3]. This malloc function returns a pointer of type void.
This means that we can assign it to any type of pointer. In this case, the pointer is
type-casted to an integer type and assigned to the pointer ptr1[1], ptr1[2] and
ptr1[3]. Now, each of ptr1[1], ptr1[2] and ptr1[3] points to the first byte of the
memory allocated to the corresponding set of one-dimensional integer arrays of the
original two-dimensional array.

36

Structures, Pointers
and File Handling

The process of calculating and allocating memory at run time is known as dynamic
memory allocation. The library routine malloc can be used for this purpose.

Instead of using conventional array notation, pointer notation has been used for
accessing the address and value of corresponding array elements which has been
explained to you in the previous section. The difference of the array elements within
the function calcdiff is written as

((ptr3 + i) + j) = *(*(ptr1 + i) + j) - *(*(ptr2 + i) + j);

10.9 POINTERS AND STRINGS

As we have seen in strings, a string in C is an array of characters ending in the null
character (written as '\0'), which specifies where the string terminates in memory.
Like in one-dimensional arrays, a string can be accessed via a pointer to the first
character in the string. The value of a string is the (constant) address of its first
character. Thus, it is appropriate to say that a string is a constant pointer.
A string can be declared as a character array or a variable of type char *. The
declarations can be done as shown below:

char country[] = "INDIA";
char *country = "INDIA";

Each initialize a variable to the string “INDIA”. The second declaration creates a
pointer variable country that points to the letter I in the string "INDIA" somewhere in
memory.

Once the base address is obtained in the pointer variable country, *country would
yield the value at this address, which gets printed through,

printf ("%s", *country);

Here is a program that dynamically allocates memory to a character pointer using the
library function malloc at run-time. An advantage of doing this way is that a fixed
block of memory need not be reserved in advance, as is done when initializing a
conventional character array.

Example 10.13

Write a program to test whether the given string is a palindrome or not.

/* Program tests a string for a palindrome using pointer notation */

include <stdio.h>
include <conio.h>
include <stdlib.h>

main()
{
 char *palin, c;
 int i, count;

 short int palindrome(char,int); /*Function Prototype */
 palin = (char *) malloc (20 * sizeof(char));
 printf("\nEnter a word: ");
 do

37

Pointers {
 c = getchar();
 palin[i] = c;
 i++;
 }while (c != '\n');

 i = i-1;
 palin[i] = '\0';
 count = i;

 if (palindrome(palin,count) == 1)
 printf ("\nEntered word is not a palindrome.");
 else
 printf ("\nEntered word is a palindrome");
 }

short int palindrome(char *palin, int len)
{
 short int i = 0, j = 0;
 for(i=0 , j=len-1; i < len/2;i++,j--)
 {
 if (palin[i] == palin[j])
 continue;
 else
 return(1);
 }
 return(0);
}

OUTPUT

Enter a word: malayalam

Entered word is a palindrome.

Enter a word: abcdba

Entered word is not a palindrome.

Array of pointers to strings

Arrays may contain pointers. We can form an array of strings, referred to as a string
array. Each entry in the array is a string, but in C a string is essentially a pointer to its
first character, so each entry in an array of strings is actually a pointer to the first
character of a string. Consider the following declaration of a string array:

char *country[] = {
 “INDIA”, “CHINA”, “BANGLADESH”, “PAKISTAN”, “U.S”
 };

The *country[] of the declaration indicates an array of five elements. The char* of
the declaration indicates that each element of array country is of type “pointer to
char”. Thus, country [0] will point to INDIA, country[1] will point to CHINA, and
so on.

Thus, even though the array country is fixed in size, it provides access to character
strings of any length. However, a specified amount of memory will have to be
allocated for each string later in the program, for example,

38

Structures, Pointers
and File Handling

country[i] = (char *) malloc(15 * sizeof (char));

The country character strings could have been placed into a two-dimensional array
but such a data structure must have a fixed number of columns per row, and that
number must be as large as the largest string. Therefore, considerable memory is
wasted when a large number of strings are stored with most strings shorter than the
longest string.

As individual strings can be accessed by referring to the corresponding array element,
individual string elements be accessed through the use of the indirection operator.
For example, * (* country + 3) + 2) refers to the third character in the fourth string
of the array country. Let us see an example below.

Example 10.14

Write a program to enter a list of strings and rearrange them in alphabetical order,
using a one-dimensional array of pointers, where each pointer indicates the beginning
of a string:

/* Program to sort a list of strings in alphabetical order using an array of pointers */

include <stdio.h>
include <conio.h>
include <stdlib.h>
include <string.h>

void readinput (char *[], int);
void writeoutput (char *[], int);
void reorder (char *[], int);

main()
{
 char *country[5];
 int i;
 for (i = 0; i < 5; i++)
 {
 country[i] = (char *) malloc (15 * sizeof (char));
 }
 printf ("Enter five countries on a separate line\n");
 readinput (country, 5);
 reorder (country, 5);
 printf ("\nReordered list\n");
 writeoutput (country, 5);
 getch();
}

void readinput (char *country[], int n)
{
 int i;
 for (i = 0; i < n; i++)
 { scanf ("%s", country[i]); }
 return;
}

void writeoutput (char *country[], int n)
{
 int i;

39

Pointers for (i = 0; i < n; i++)
 { printf ("%s", country[i]);
 printf ("\n"); }
 return;
}

void reorder (char *country[], int n)
{
 int i, j;
 char *temp;
 for (i = 0; i < n-1; i++)
 {
 for (j = i+1; j < n; j++)
 {
 if (strcmp (country[i], country[j]) > 0)
 {
 temp = country[i];
 country[i] = country[j];
 country[j] = temp;
 }
 }
 }
 return;
 }

OUTPUT

Enter five countries on a seperate line
INDIA
BANGLADESH
PAKISTAN
CHINA
SRILANKA

Reordered list
BANGLADESH
CHINA
INDIA
PAKISTAN
SRILANKA

The limitation of the string array concept is that when we are using an array of
pointers to strings we can initialize the strings at the place where we are declaring the
array, but we cannot receive the strings from keyboard using scanf().

Check Your Progress 3

1. What is meant by array of pointers?

…………………………………………………………………………………………

…………………………………………………………………………………………

2. How the indirection operator can be used to access a multidimensional array
element.

…………………………………………………………………………………………

…………………………………………………………………………………………

40

Structures, Pointers
and File Handling

3. A C program contains the following declaration.
 float temp[3][2] = {{13.4, 45.5}, {16.6, 47.8}, {20.2, 40.8}};

(i) What is the meaning of temp?
(ii) What is the meaning of (temp + 2)?
(iii) What is the meaning of *(temp + 1)?
(iv) What is the meaning of (*(temp + 2) + 1)?
(v) What is the meaning of *(*(temp) + 1) + 1)?
(vi) What is the meaning of *(*(temp + 2))?

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

10.10 SUMMARY

In this unit we have studied about pointers, pointer arithmetic, passing pointers to
functions, relation to arrays and the concept of dynamic memory allocation. A
pointer is simply a variable that contains an address which is a location of another
variable in memory. The unary operator &, when preceded by any variable returns its
address. C’s other unary pointer operator is *, when preceded by a pointer variable
returns a value stored at that address.

Pointers are often passed to a function as arguments by reference. This allows data
items within the calling function to be accessed, altered by the called function, and
then returned to the calling function in the altered form. There is an intimate
relationship between pointers and arrays as an array name is really a pointer to the
first element in the array. Access to the elements of array using pointers is enabled
by adding the respective subscript to the pointer value (i.e. address of zeroth element)
and the expression preceded with an indirection operator.

As pointer declaration does not allocate memory to store the objects it points at,
therefore, memory is allocated at run time known as dynamic memory allocation. The
library routine malloc can be used for this purpose.

10.11 SOLUTIONS / ANSWERS

Check Your Progress 1

1. Refer to section 10.4. The data type included in the pointer declaration, refers to

the type of data stored at the address which we will be storing in our pointer.

2. (i) Compile-time Error : Lvalue Required. Means that the left side of an

assignment operator must be an addressable expression that include a variable
or an indirection through a pointer.

 (ii) Multiplication of a pointer variable with a constant is invalid.

3. (i) Refer section 10.4
 (ii) Refer section 10.4
 (iii) This means pointers can be of type void but can’t be de-referenced without
 explicit casting. This is because the compiler can’t determine the size of the
 object the pointer points to.

41

Pointers

Check Your Progress 2

1 (i) True.
 (ii) True.
 (iii) False.
 (iv) True.
 (v) True.
 (vi) True.

Check Your Progress 3

1. Refer section 10.4.

2. Refer section 10.4 to comprehend the convention followed.

3. (i) Refers to the base address of the array temp.

 (ii) Address of the first element of the last row of array temp i.e. address of

element 20.2.

 (iii) Will give you 0. To get the value of the last element of the first array i.e. the

correct syntax would be *(*(temp+0)+1).

 (iv) Address of the last element of last row of array temp i.e. of 40.8.

 (v) Displays the value 47.8 i.e., second element of last row of array temp.

 (vi) Displays the value 20.2 i.e., first element of last row of array temp.

10.12 FURTHER READINGS

1. Programming with C, Second Edition, Gottfried Byron S, Tata McGraw Hill,

India.
2. The C Programming Language, Second Edition, Brian Kernighan and Dennis

Richie, PHI, 2002.
3. Programming in ANSI C, Second Edition, Balaguruswamy E, Tata McGraw Hill,

India, 2002.
4. How to Solve it by Computer, R.G.Dromey, PHI, 2002.
5. C Programming in 12 easy lessons, Greg Perry, SAMS, 2002.
6. Teach Yourself C in 21 days, Fifth Edition, Peter G, Fifth edition,SAMS, 2002.

