Control Statements,
Arrays and
Functions

40

UNIT 7 STRINGS

Structure

7.0 Introduction
7.1 Objectives
7.2 Declaration and Initialization of Strings
7.3 Display of Strings Using Different Formatting Techniques
7.4 Array of Strings
7.5 Built-in String Functions and Applications
7.5.1 Strlen Function
7.5.2 Strcpy Function
7.5.3 Strcmp Function
7.5.4 Strcat Function
7.5.5 Strlwr Function
7.5.6 Strrev Function
7.5.7 Strspn Function
7.6 Other String Functions
7.7 Summary
7.8 Solutions / Answers
7.9 Further Readings

7.0 INTRODUCTION

In the previous unit, we have discussed numeric arrays, a powerful data storage
method that lets you group a number of same-type data items under the same group
name. Individual items, or elements, in an array are identified using a subscript after
the array name. Computer programming tasks that involve repetitive data processing
lend themselves to array storage. Like non-array variables, arrays must be declared
before they can be used. Optionally, array elements can be initialized when the array
is declared. In the earlier unit, we had just known the concept of character arrays
which are also called strings.

String can be represented as a single-dimensional character type array. C language
does not provide the intrinsic string types. Some problems require that the characters
within a string be processed individually. However, there are many problems which
require that strings be processed as complete entities. Such problems can be
manipulated considerably through the use of special string oriented library functions.
Most of the C compilers include string library functions that allow string comparison,
string copy, concatenation of strings etc. The string functions operate on null-
terminated arrays of characters and require the header <string.h>.The use of the some
of the string library functions are given as examples in this unit.

7.1 OBJECTIVES

After going through this unit, you will be able to:

e define, declare and initialize a string;
e discuss various formatting techniques to display the strings; and
e discuss various built-in string functions and their use in manipulation of strings.

7.2 DECLARATION AND INITIALIZATION OF STRINGS

Strings in C are group of characters, digits, and symbols enclosed in quotation marks
or simply we can say the string is declared as a “character array”. The end of the
string is marked with a special character, the \O’ (Null character), which has the
decimal value 0. There is a difference between a character stored in memory and a

single character string stored in a memory. The character requires only one byte Strings
whereas the single character string requires two bytes (one byte for the character and
other byte for the delimiter).

Declaration of strings

A string in C is simply a sequence of characters. To declare a string, specify the data
type as char and place the number of characters in the array in square brackets after
the string name. The syntax is shown as below:

char string-namel(sizel;
For example,

char name[20];
char address[25];
char city[15];

Initialization of strings
The string can be initialized as follows:
char name[8] = {‘P’, ‘R’, ‘O’, ‘G’, ‘R’, ‘A’, ‘M’, \0’};

Each character of string occupies 1 byte of memory (on 16 bit computing). The size of
character is machine dependent, and varies from 16 bit computers to 64 bit computers.
The characters of strings are stored in the contiguous (adjacent) memory locations.

1 byte 1 byte 1 byte 1 byte 1 byte 1 byte 1 byte 1 byte

P R 0 |G | R A |M \0

1001 1002 1003 1004 1005 1006 1007 1008

The C compiler inserts the NULL (\0) character automatically at the end of the string.
So initialization of the NULL character is not essential.

You can set the initial value of a character array when you declare it by specifying a
string literal. If the array is too small for the literal, the literal will be truncated. If the
literal (including its null terminator) is smaller than the array, then the final characters
in the array will be undefined. If you don’t specify the size of the array, but do specify
a literal, then C will set the array to the size of the literal, including the null
terminator.

char str[4] = {v’, ‘n’, ‘1", ‘X’};
char str[5] = {‘w’, ‘n’, ‘1’, x’, \0’};
char str[3];

char str[| = “UNIX”;

char str[4] = “unix”;

char str[9] = “unix”;

All of the above declarations are legal. But which ones don’t work? The first one is a
valid declaration, but will cause major problems because it is not null-terminated. The
second example shows a correct null-terminated string. The special escape character
\0 denotes string termination. The fifth example suffers the size problem, the character
array ‘str’is of size 4 bytes, but it requires an additional space to store ‘10°. The
fourth example however does not. This is because the compiler will determine the
length of the string and automatically initialize the last character to a null-terminator.
The strings not terminated by a ‘10’ are merely a collection of characters and are
called as character arrays.

41

Control Statements,
Arrays and
Functions

42

String Constants

String constants have double quote marks around them, and can be assigned to char
pointers. Alternatively, you can assign a string constant to a char array - either with no
size specified, or you can specify a size, but don’t forget to leave a space for the null
character! Suppose you create the following two code fragments and run them:

/* Fragment 1 */
{
char *s;
s=hello”;
printf(“%s\n”,s);
}

/* Fragment 2 */

{
char s[100];

strepy(s, “ hello™);
printf(“%s\n”,s);
H

These two fragments produce the same output, but their internal behaviour is quite
different. In fragment 2, you cannot say s = ""hello";. To understand the differences,
you have to understand how the string constant table works in C. When your program
is compiled, the compiler forms the object code file, which contains your machine
code and a table of all the string constants declared in the program. In fragment 1, the
statement s = "hello"'; causes s to point to the address of the string hello in the string
constant table. Since this string is in the string constant table, and therefore technically
a part of the executable code, you cannot modify it. You can only point to it and use it
in a read-only manner. In fragment 2, the string hello also exists in the constant table,
so you can copy it into the array of characters named s. Since s is not an address, the
statement s="hello"'; will not work in fragment 2. It will not even compile.

Example 7.1

Write a program to read a name from the keyboard and display message Hello onto
the monitor

Program 7.1

/*Program that reads the name and display the hello along with your name*/
#include <stdio.h>

main()

{

char name[10];

printf(*“\nEnter Your Name :);

scanf(“%s”, name);

printf(“Hello %s\n”, name);

b

OUTPUT

Enter Your Name : Alex
Hello Alex

In the above example declaration char name [10] allocates 10 bytes of memory space
(on 16 bit computing) to array name [|. We are passing the base address to scanf
function and scanf() function fills the characters typed at the keyboard into array until
enter is pressed. The scanf() places ‘\0’ into array at the end of the input. The printf()

function prints the characters from the array on to monitor, leaving the end of the Strings
string ‘\0’. The %6s used in the scanf() and printf() functions is a format specification
for strings.

7.3 DISPLAY OF STRINGS USING DIFFERENT
FORMATTING TECHNIQUES

The printf function with %s format is used to display the strings on the screen. For
example, the below statement displays entire string:

printf(*“%s”, name);

We can also specify the accuracy with which character array (string) is displayed. For
example, if you want to display first 5 characters from a field width of 15 characters,
you have to write as:

printf(“%15.5s”, name);

If you include minus sign in the format (e.g. % —10.5s), the string will be printed left
justified.

printf(“% -10.5s”, name);

Example 7.2

Write a program to display the string “UNIX” in the following format.

U

UN
UNI
UNIX
UNIX
UNI
UN

U

/* Program to display the string in the above shown format*/

include <stdio.h>
main()
{
nt Xx,Yy;
static char string[] = “UNIX”;
printf(*\n”);
for(x=0; x<4; x++)
{
y=x+1
/* reserves 4 character of space on to the monitor and minus sign is for left
justified*/
printf(“%-4.*s \n”, y, string);

/* and for every loop the * is replaced by value of y */
/* y value starts with 1 and for every time it is incremented by 1 until it reaches to 4*/

}

for(x=3; x>=0; x- -)
{
y=x+1;
printf(“%-4.*s \n”, y, string); 43

Control Statements,
Arrays and
Functions

44

/* y value starts with 4 and for every time it is decrements by 1 until it reaches to 1%/

}
§

OUTPUT

U

UN
UNI
UNIX
UNIX
UNI
UN

U

7.4 ARRAY OF STRINGS

Array of strings are multiple strings, stored in the form of table. Declaring array of
strings is same as strings, except it will have additional dimension to store the number
of strings. Syntax is as follows:

char array-namefsize] [size];

For example,

char names[5][10];

where names is the name of the character array and the constant in first square
brackets will gives number of string we are going to store, and the value in second
square bracket will gives the maximum length of the string.

Example 7.3

char names [3][10] = {“martin”, “phil”, “collins”};

It can be represented by a two-dimensional array of size[3][10] as shown below:

0 1 2 3 4 5 6 7 8 9
m a r t 1 n \0

p h 1 1 \0

C o) 1 1 1 n S \0

Example 7.4

Write a program to initializes 3 names in an array of strings and display them on to
monitor

/* Program that initializes 3 names in an array of strings and display them on to
monitor.*/

#include <stdio.h>
main()
{ .
int n;
char names[3][10] = {“Alex”, “Phillip”, “Collins” };
for(n=0; n<3; n++)
printf(“%s \n”,names[n]); }

OUTPUT

Alex
Phillip
Collins

Check Your Progress 1

1. Which of the following is a static string?

A. Static String;

B. “Static String”;
C. ‘Static String’;
D. char string[100];

3. What is the Output of the following programs?

(a) main()
{
char name[10] = “IGNOU”;
printf(*“\n %c”, name[0]);
printf(*\n %s”, name);

}

(b) main()
{
char s[] = “hello”;
intj = 0;
while (s[j] !=0")
printf(*“ %c”,s[j++]);
b

(c) main()

{

char str[] = “hello”;
printf(*“%10.2s”, str);
printf(“%-10.2s”, str);

Strings

45

Control Statements,
Arrays and
Functions

46

4 Write a program to read 'n' number of lines from the keyboard using a two-
dimensional character array (ie., strings).

7.5 BUILT IN STRING FUNCTIONS AND
APPLICATIONS

The header file <string.h> contains some string manipulation functions. The following
is a list of the common string managing functions in C.

7.5.1 Strlen Function

The strlen function returns the length of a string. It takes the string name as argument.
The syntax is as follows:

n = strlen (str);

where str is name of the string and n is the length of the string, returned by strlen
function.

Example 7. 5

Write a program to read a string from the keyboard and to display the length of the
string on to the monitor by using strlen() function.

/* Program to illustrate the strlen function to determine the length of a string */

#include <stdio.h>
#include <string.h>
main()

char name[80];

int length;

printf(“Enter your name: ”’);

gets(name);

length = strlen(name);

printf(*“Y our name has %d characters\n”, length);

H

OUTPUT

Enter your name: TYRAN
Your name has 5 characters

7.5.2 Strcpy Function

In C, you cannot simply assign one character array to another. You have to copy
element by element. The string library <string.h> contains a function called strepy for
this purpose. The strepy function is used to copy one string to another. The syntax is
as follows:

strepy(strl, str2);
where strl, str2 are two strings. The content of string str2 is copied on to string strl.

Example 7.6

Write a program to read a string from the keyboard and copy the string onto the
second string and display the strings on to the monitor by using strcpy() function.

/* Program to illustrate strcpy function*/

#include <stdio.h>

#include <string.h>

main()

{

char first[80], second[80];

printf(“Enter a string: ’);

gets(first);

strcpy(second, first);

printf(“\n First string is : %s, and second string is: %s\n”, first, second);

b

OUTPUT

Enter a string: ADAMS
First string is: ADAMS, and second string is: ADAMS

7.5.3 Strcmp Function

The stremp function in the string library function which compares two strings,
character by character and stops comparison when there is a difference in the ASCII
value or the end of any one string and returns ASCII difference of the characters that
is integer. If the return value zero means the two strings are equal, a negative value
means that first is less than second, and a positive value means first is greater than
second. The syntax is as follows:

n = stremp(strl, str2);
where strl and str2 are two strings to be compared and n is returned value of differed
characters.

Example 7.7
Write a program to compare two strings using string compare function.
/* The following program uses the stremp function to compare two strings. */

#include <stdio.h>
#include <string.h>
main()
{
char first[80], second[80];
int value;
printf(“Enter a string: ”’);
gets(first);
printf(“Enter another string: ’);
gets(second);
value = strcmp(first,second);
if(value == 0)
puts(“The two strings are equal”);
else if(value < 0)
puts(“The first string is smaller ’);
else if(value > 0)

Strings

47

Control Statements,
Arrays and
Functions

48

puts(“the first string is bigger”);
H

OUTPUT

Enter a string: MOND
Enter another string: MOHANT
The first string is smaller

7.5.4 Strcat Function

The strcat function is used to join one string to another. It takes two strings as
arguments; the characters of the second string will be appended to the first string. The
syntax is as follows:

streat(strl, str2);
where strl and str2 are two string arguments, string s¢72 is appended to string strl.

Example 7.8
Write a program to read two strings and append the second string to the first string.
/* Program for string concatenation*/

#include <stdio.h>

#include <string.h>

main()

{

char first[80], second[80];
printf(“Enter a string:”);
gets(first);

printf(“Enter another string: ”);
gets(second);

strcat(first, second);
printf(*\nThe two strings joined together: %s\n”, first);

H

OUTPUT

Enter a string: BOREX
Enter another string: BANKS
The two strings joined together: BOREX BANKS

7.5.5 Strlwr Function

The strlwr function converts upper case characters of string to lower case characters.
The syntax is as follows:

striwr(stri);
where strl is string to be converted into lower case characters.

Example 7.9

Write a program to convert the string into lower case characters using in-built
function.

/* Program that converts input string to lower case characters */

#include <stdio.h>
#include <string.h>

main()

{
char first[80];

printf("Enter a string: ");
gets(first);
printf("Lower case of the string is %s”, strlwr(first));

}

OUTPUT

Enter a string: BROOKES
Lower case of the string is brookes

7.5.6 Strrev Function
The strrev funtion reverses the given string. The syntax is as follows:

strrev(str),;
where string str will be reversed.

Example 7.9
Write a program to reverse a given string.

/* Program to reverse a given string */

#include <stdio.h>
#include <string.h>
main()

{
char first[80];

printf(“Enter a string:”);
gets(first);
printf(*\n Reverse of the given string is : %s 7, strrev(first));

}

OUTPUT

Enter a string: ADANY
Reverse of the given string is: YNADA

7.5.7 Strspn Function

The strspn function returns the position of the string, where first string mismatches
with second string. The syntax is as follows:

n = strspn (first, second);
where first and second are two strings to be compared, n is the number of character
from which first string does not match with second string.

Example 7.10

Write a program, which returns the position of the string from where first string does
not match with second string.

/*Program which returns the position of the string from where first string does not
match with second string™®/

#include <stdio.h>
#include <string.h>
main()

Strings

49

Control Statements,
Arrays and
Functions

50

{
char first[80], second[80];

printf("Enter first string: “);

gets(first);

printf(“\n Enter second string: “);

gets(second);

printf(“\n After %d characters there is no match”,strspn(first, second));

}

OUTPUT

Enter first string: ALEXANDER
Enter second string: ALEXSMITH
After 4 characters there is no match

7.6 OTHER STRING FUNCTIONS

strncpy function

The strncpy function same as strcpy. It copies characters of one string to another
string up to the specified length. The syntax is as follows:

strncpy(strl, str2, 10);
where strl and str2 are two strings. The 10 characters of string str2 are copied onto
string strl.

stricmp function

The stricmp function is same as strcmp, except it compares two strings ignoring the
case (lower and upper case). The syntax is as follows:

n = stricmp(strl, str2),;

strncmp function

The strncmp function is same as strcmp, except it compares two strings up to a
specified length. The syntax is as follows:

n = strncmp(strl, str2, 10);
where 10 characters of strl and str2 are compared and n is returned value of differed
characters.

strchr function

The strchr funtion takes two arguments (the string and the character whose address is
to be specified) and returns the address of first occurrence of the character in the given
string. The syntax is as follows:

cp = strchr (str, ¢);
where str is string and ¢ is character and ¢p is character pointer.

strset function

The strset funtion replaces the string with the given character. It takes two arguments
the string and the character. The syntax is as follows:

strset (first, ch);
where string first will be replaced by character ch.

strchr function

The strchr function takes two arguments (the string and the character whose address
is to be specified) and returns the address of first occurrence of the character in the
given string. The syntax is as follows:

cp = strchr (str, ¢);
where str is string and ¢ is character and cp is character pointer.

strncat function

The strncat function is the same as strcat, except that it appends upto specified
length. The syntax is as follows:

strncat(strl, str2,10);
where 10 character of the str2 string is added into strl string.

strupr function

The strupr function converts lower case characters of the string to upper case
characters. The syntax is as follows:

strupr(strl),;
where strl is string to be converted into upper case characters.

strstr function

The strstr function takes two arguments address of the string and second string as
inputs. And returns the address from where the second string starts in the first string.
The syntax is as follows:

cp = strstr (first, second);
where first and second are two strings, ¢p is character pointer.

Check Your Progress 2

1. Which of the following functions compares two strings?
A. compare();
B. stringcompare();
C. cmp();
D. stremp();

2. Which of the following appends one string to the end of another?
A. append();
B. stringadd();
C. strcat();
D. stradd();

4. Write a program to find string length without using the strlen() function.

Strings

51

Control Statements,
Arrays and
Functions

5. Write a program to convert lower case letters to upper case letters in a given
string without using strupp().

7.7 SUMMARY

Strings are sequence of characters. Strings are to be null-terminated if you want to use
them properly. Remember to take into account null-terminators when using dynamic
memory allocation. The string.h library has many useful functions. Losing the ‘ \0’
character can lead to some very considerable bugs. Make sure you copy \0 when you
copy strings. If you create a new string, make sure you put \0 in it. And if you copy
one string to another, make sure the receiving string is big enough to hold the source
string, including \0. Finally, if you point a character pointer to some characters, make
sure they end with \0.

String Functions | Its Use

strlen Returns number of characters in string.

striwr Converts all the characters in the string into lower case characters
strcat Adds one string at the end of another string

strcpy Copies a string into another

stremp Compares two strings and returns zero if both are equal.
strdup Duplicates a string

strchr Finds the first occurrence of given character in a string
strstr Finds the first occurrence of given string in another string
strset Sets all the characters of string to given character or symbol
strrev Reverse a string

7.8 SOLUTIONS / ANSWERS

Check Your Progress 1

1. B
2. C
3. (a 1
IGNOU
(b) hello
(c) hehe

52

Check Your Progress 2

1. D

2. C

3. /* Program to concatenate two strings without using the strcat() function*/

include<string.h>
include <stdio.h>
main()
{
char str1[10];
char str2[10];
char output_str[20];
int i=0, j=0, k=0;
printf(" Input the first string: ");
gets(strl);
printf("\nInput the second string: ");
gets(str2);
while(str1[i] != “\0”)
output_str[k++] = strl1[i++];
while(str2[j] !="0")
output_str[k++] = str2[j++];
output_str[k] = “\0’;
puts(output_str);
}

/* Program to find the string length without using the strlen() funtion */

include<stdio.h>

include<string.h>

main()

{

char string[60];

int len=0, i=0;

printf(* Input the string : ”);

gets(string);

while(string[i++] != \0)
len ++;

printf(“Length of Input String = %d”, len);

getchar();

}

/* Program to convert the lower case letters to upper case in a given string
without using strupp() function*/

#include<stdio.h>

main()

{

int i=0; char source[10], destination[10];
gets(source);

while(source[i] != \0)

if((source[i]>=97) && (source[i]<=122))

Strings

53

Control Statements,
Arrays and
Functions

54

destination[i]=source[i]-32;
else
destination[i]=source[i];
i+t
}
destination[i]= \0 ’;
puts(destination);

7.9 FURTHER READINGS

1. The C programming language, Brain W. Kernighan, Dennis M. Ritchie, PHI.

2. Programming with ANSI and Turbo C, Ashok N. Kamthane, Pearson
Education, 2002.

3. Computer Programming in C, Raja Raman. V, 2002, PHI.

4, C,The Complete Reference, Fourth Edition, Herbert Schildt, Tata McGraw Hill,
2002.

5. Computer Science A structured Programming Approach Using C, Behrouz A.
Forouzan, Richard F. Gilberg, Brooks/Cole Thomas Learning, Second Edition,
2001.

	Declaration of strings
	
	
	
	Check Your Progress 1

