UNIT 2 REGISTERS, MICRO-OPERATIONS
AND INSTRUCTION EXECUTION

Structure . Page No.
2.0 Introduction) 31
2.1 Objectives : 31
2.2 Basic CPU Structure 32
2.3 Register Organization 34

2.3.1 Programmer Visible Registers

2.32 Status and Control Registers
2.4 General Registers in a Processor 37
2.5 Micro-operation Concepts 38

‘ 2.5.1 Register Transfer Micro-operations

2.5.2 Arithmetic Micro-operations

253 Logic Micro-operations

2.5.4 Shift Micro-operations

2.6 Instruction Execution and Micro-operations 45
2.7 Instruction Pipelining 49
2.8 Summary 50

2.9 Solutions/ Answers 51

2.0 INTRODUCTION

The main task performed by the CPU is the execution of instructions. In the previous
unit, we have discussed about the instruction set of computer system. But, one thing,
which remained unanswered is: how these instructions will be executed by the CPU?

The above question can be broken down into two simpler questions. These are:

What are the steps required for the execution of an instruction? How are these steps
performed by the CPU? : ‘

The answer to the first question lies in the fact that each instruction execution consists
of several steps. Together they constitute an instruction cycle. A micro-operation is
the smallest operation performed by the CPU. These operations put together execute
an insiruction.

For answering the second question, we must have an understanding of the basic
structure of a computer. As discussed earlier, the CPU consists of an Arithmetic Logic
Unit, the control unit and operational registers. We will be discussing the register
organisation in this unit, whereas the arithmetic-logic unit and control unit
organisation are discussed in subsequent units. ‘

In this unit we will first discuss the basic CPU structure and the register organisation
in general. This is followed by a discussion on micro-operations and their
implementation. The discussion on micro-operations will gradually lead us towards
the discussion of a very simple ALU structure. The detail of ALU structure is the
topic of the next unit.

2.1 OBJECTIVES

After going through this unit, you should be able to:

e describe the register organisation of the CPU;

(@8]

st

The Central
Processing Unit

32

e define what is a micro-operation;
o differentiate among various micro-operations;
e discuss an instruction execution using the micro-operations; and

o define the concepts of instruction pipelining,

2.2 BASIC CPU STRUCTURE

A computer manipulates data according to the instructions of a stored program..
Stored program means the program and data are stored in the same memory unit.
The central processing unit, also referred to as CPU, performs the bulk of the data
processing operations. It has three main components:

1. A set of registers for holding binary information.
2. An arithmetic and logic unit (ALU) for performing data manipulation, and

3. A control unit that coordinates and controls the various operations and initiates
the appropriate sequence of micro-operations for each task.

Computer instructions are normally stored in consecutive memory locations and are
executed in sequence one by one. The control unit allows reading of an instruction
from a specific address in memory and executes it with the help of ALU and Register.

Instruction Execution and Registers
The basic process of instruction execution is:

1. Instruction is fetched from memory to the CPU registers (called instruction fetch)
under the control unit.

2. Itis decoded by the control unit and converted into a set of lower level control
signals, which cause the functions specified by that instruction to be executed.

3. After the completion of execution of the current instruction, the next instruction
fetched is the next instruction in sequence.

This process is repeated for every instruction except for program control instructions,
like branch, jump or exception instructions. In this case the next instruction to be
fetched from memory is taken from the part of memory specified by the instruction,
rather than being the next instruction in sequence.

But wh); do we need Registers?

If te, is the cycle time of CPU that is the time taken by the CPU to execute a well-
defined micro-operation using registers, and tyer, is the memory cycle time, that is the
speed at which the memory can be accessed by the CPU, then (ty/tmem) is in the range
of 2 to 10, that is CPU is 2 — 10 times faster than memory. Thus, CPU registers are the
fastest temporary storage areas. Thus, the instructions whose operands are stored in
the fast CPU registers can be executed rapidly in comparison to the instructions whose
operands are in the main memory of a computer. Each instruction must designate the -
registers it will address. Thus, a machine requires a large number of registers.

Registers, Micro-
' operations and *

General o Arithmetic Instruction
: Purpose — Logic Execution
: Register Set Unit (ALU) : '
. 4 : Data —
: ‘ Processing
f : Unit
. A4 Y E
u, : Buffer Register [| _Status '
g : for Data Register :
%R :
§§ —»| 3 2 idd -
EE MgE Ak 4
g g_ S Control ’L
- — P mis
= : ¥ :
g Buffer Register Instruction
: ‘ for Address(MAR) Register ;
. : \ 4 : Control
« |Program |,] + Unit
: | Counter Logic for B
P Address Control > EF:
: Stack |yl generation it ?8:7;
Pointer . ;

Figure 1: CPU with general register organisation

But how do the registers help in instruction execution? We will discuss this with the
help of Figure 1.

Step 1:

The first step of instruction execution is to fetch the instruction that is to be executed
To do so we require:

Address of the “instruction to be fetched”. Normally Program counter (PC)
register stores this information.

Now this address is converted to physical machine address and put on address
bus with the help of a buffer register sometimes called Memory Address Register
(MAR).

This, coupled with a request from control unit for reading, fetches the instruction
on the data bus, and transfers the instruction to Instruction Register (IR).

e On completion of fetch PC is incremented to point to the next instruction.
In Step 2:
o The IR is'decoded; let us assume that Instruction Register contains an instruction.

ADD Memory location B with general purpose register R1 and store result in R1,
then control unit will first instruct to:

® Get the data of memory location B to buffer register for data (DR) using
buffer address register (MAR) by issuing Memory read operation.

e This data may be stored in a general purpose register, if so needed let us say
R2 ' :

33

The Central
Processing Unit

34

® Now, ALU will perform addition of R1 & R2 under the command of control
unit and the result will be put back in R1. The status of ALU operation for
example result in zero/non zero, overflow/no overflow etc. is recorded in the
status register.

¢ Similarly, the other instructions are fetched and executed using ALU and register
under the control of the Control Unit.

Thus, for describing instruction execution, we must describe the registers layout,
micro-operations, ALU design and finally the control unit organization. We will
discuss registers and micro- operation in this unit. ALU and Control Unit are
described in Unit 3 and Unit 4 of this Block.

2.3 REGISTER ORGANISATION

The number and the nature of registers is a key factor that differentiates among
computers. For example, Intel Pentium has about 32 registers. Some of these registers
are special registers and others are general-purpose registers. Some of the basic
registers in a machine are:

¢ All von-Neumann machines have a program counter (PC) (or instruction counter

IC), which is a register that contains the address of the next instruction to be
~ executed. '

¢ Most computers use special registers to hold the instruction(s) /currently being
executed. They are called instruction register (IR). ‘

¢ There are a number of general-purpose-registers. With these three kinds of
registers, a computer would be able to execute programs.

e Other types of registers:

_ & Memory-address register (MAR) holds the address of next memory
operation (load or store).
e Memory-buffer register (MBR) holds the content of memory operation (load
or store).
e Processor status bits indicate the current status of the processor. Sometimes
it is combined with the other processor status bits and is called the program
status word (PSW).

A few factors to consider when choosing the number of registers in a CPU are:

CPU can access registers faster then it can access main memory.

For addressing a register, depending on the number of addressable registers a few
bit addresses is needed in an instruction. These address bits are definetly quite
less in comparison to a memory address. For example, for addressing 256
registers you just need 8 bits, whereas, the common memory size of IMB
requires 20 address bits, a difference of 60%.

e Compilers tend to use a small number of registers because large numbers of
registers are very difficult to use effectively. A general good number of registers
is 32 in a general machine.

e Registers are more expensive than memory but far less in number.

From a user’s point of view the reglster set can be cla551ﬁed under two basic
categories.

Programmer Visible Registers: These registers can be used by machine or assembly
language programmers to minimize the references to main memory.

Status Control and Registers: These registers cannot be used by the programmers
but are used to control the CPU or the execution of a program.

Different vendors have used some of these registers interchangeably; therefore, you
should not stick to these definitions rigidly. Yet this categorization will help in better
understanding of register sets of machine. Therefore, let us discuss more about these
categories,

2.3.1 Programmer Visible Registers

These registers can be accessed using machine language. In general we encounter four
types of programmer visible registers.

General Purpose Registers
Data Registers

Address Registers
Condition Codes Registers.

A comprehensive example of registers of 8086 is given in Unit 1 Block 4.

The general-purpose registers as the name suggests can be used for various functions.
For example, they may contain operands or can be used: for calculation of address of
operand etc. However, in order to simplify the task of programmers and computers
dedicated registers can be used. For example, registers may be dedicated to floating
point operations. One such common dedication may be the data and address registers.

The data registers are used only for storing intermediate results or data and not for
operand address calculation.

Some dedicated address registers are:

Segment Pointer : Used to point out a segment of memory.

Index Register : These are used for index addressing scheme.

Stack Pointer : Points to top of the stack when pro grammer visible stack
addressing is used.

One of the basic issues with register design is the number of general-purpose registers
or data and address registers to be provided in a microprocessor. The number of
registers also affects the instruction design as the number of registers determines the
number of bits needed in an instruction to specify a register reference. In general, it
has been found that the optimum number of registers in a CPU is in the range 16 to
32. In case registers fall below the range then more memory reference per instruction
on an average will be needed, as some of the intermediate results then have to be
_stored in the memory. On the other hand, if the number of registers goes above 32,
then there is no appreciable reduction in memory references. However, in some
computers hundreds of registers are used. These systems have special characterigtics.
These are called Reduced Instruction Set Computers (RISC) and they exhibit this
property. RISC computers are discussed later in this unit.

What is the importance of having less memory references? As the time required for
memory reference is more than that of a register reference, therefore the increased -
number of memory references results in slower execution of a program.

Register Length: An important characteristic related to registers is the length of a
register. Normally, the length of a register is dependent on its use. For example, a
register, which is used to calculate address, must be long enough to hold the
maximum possible addresses. If the size of memory is 1 MB than a minimum of 20
bits are required to store an instruction address. Please note how this requirement can
be optimized in 8086 in the block 4. Similarly, the length of data register should be”

Registers, Micro-
operations and
Instruction
Execution

K}

The Central
Processing Unit

36

long enough to hold the data type it is supposed to hold. In certain cases two
consecutive registers may be used to hold data whose length is double of the register
length.

2.3.2 Status and Control Registers

For control of various operations several registers are used. These registers cannot be
used in data manipulation; however, the content of some of these registers can be used
by the programmer. One of the control registers for a von-Neumann machine is the
Program Counter (PC).

Almost all the CPUs, as discussed earlier, have a status register, a part of which may
be programmer visible. A register which may be formed by condition codes is called

- condition code register. Some of the commonly used flags or condition codes in such
- a register may be:

Flag Comments

Sign flag This indicates whether the sign of previous arithmetic operation
was positive (0) or negative (1). '

Zero flag This flag bit will bz set if the result of the last arithmetic
operation was zero.

Carry flag | This flag is set, if a carry results from the addition of the highest
order bits or borrow is taken on subtraction of highest order bit.

Equal flag This bit flag will be set if a logic comparison operation finds
out that both of its operands are equal.

Overflow flag | This flag is used to indicate the condition of arithmetic overflow.

Interrupt This flag is used for enabling or disabling interrupts. Enable/-
disable flag.

Supervisor flag | This flag is used in certain computers to determine whether

the CPU is executing in supervisor or user mode. In case the CPU
is in supervisor mode it will be allowed to execute certain
privileged instructions.

These flags are set by the CPU hardware while performing an operation. For example,
an addition operation may set the overflow flag or on a division by 0 the overflow flag
can be set etc. These codes may be tested by a program for a typical conditional
branch operation. The condition codes are collected in one or more registers. RISC
machines have several sets of conditional code bits. In these machines an instruction
specifies the set of condition codes which is to be used. Independent sets of condition
code enable the provisions of having parallelism within the instruction execution unit.

The flag register is often known as Program Status Word (PSW). It contains condition
code plus other status information. There can be several other status and control
registers such as interrupt vector register in the machines using vectored interrupt,
stack pointer if a stack is used to implement subroutine calls, etc.

Check Your Progress 1

1. What is an address register?

..

..

2. A machine has 20 general-purpose registers. How many bits will be needed for
" register address of this machine?

...
...

...

...
...

...

...
...

...

Let us now look into an example register set of MIPS processor.

2.4 GENERAL REGISTERS IN A PROCESSOR

~ In Block 4 Unit 1, you would be exposed to 8086 registers. In this section we will
provide very brief details of registers of a RISC system called MIPS.

MIPS is a register-to-register or load/store architecture and uses three address
instructions for data manipulation. It is because of register-register operands that you
can have more operands in an instruction of 32 bits, as register address are smaller.
The MIPS have 32 addressable registers = 2° = 5 bits register address. The table
given below displays the MIPS general purpose registers.

MIPS register names begin with a $. There are two naming conventions:
e By number:
$0 $1 $2 ... $31
e By (mostly) two-letter names, such as:

$a0-%a3 $t0-8t7 $s0-8s7 S$gp $fp $sp %ra

Not all of these are general-purpose registers. The following table describes how each
general register is treated, and the actions you can take with each register,

Register . P
Name number . Description Specify in Expression
ZERO 0 Always has the value 0. $zero
o Reserved for the assembler to handle

AT

1 large constants. ' $at
V0 - V1 Function value registers. Values for

2-3 results and expression evaluation. $v0 - $v1
A0 - A3 47 ' Argument registers. $a0 - $a3

B _

Registers, Micro-
operations and
Instruction
Execution

37

" The Central
Processing Unit

38

T0-T7 8-15 Temporary registers $t0 - $t7
S0-S7 16-23 | Saved registers : $s0 - $s7
T8 -T9 24-25 | Temporary registers $t8 - $t9

K0-K1| 26-27 |Reserved for the operating system $ki1 - $k2

GP . 28 | Global pointer register $gp
Sp 29 Stack pointer register $sp
Fp 30 Frame pointer register $tHp
RA 31 Return address register $ra

You will also study another 8086 based register organization in Block 4 of this course.
So, all the computers have a number of registers. But, how exactly is the instruction
execution related to registers? To explore this concept, let us first discuss the concept
of Micro-operations.

2.5 MICRO-OPERATION CONCEPTS

We have discussed the general architecture and register set of MIPS microprocessor.
Qur next task is to look at the functionality of ALU, the control unit and how an
instruction is executed. In this section, we will define a miero-operation concept,
which is the key concept to describe instruction execution.

A micro-operation is an elementary operation performed normally during one clock
pulse. On the information stored in one or more registers. The result of the operation
may replace the previous content of a register or is transferred to a new register or a
memory location. ‘

A digital system performs a sequence of micro-operations on data stored in registers
or memory. The specific sequence of micro-operations performed is predetermined for
an instruction. Thus, an instruction is a binary code specifying a definite sequence of
micro-operations to perform a specific function.

For example, a C program instruction sum = sum + 7, will first be converted to
equivalent assembly program:

e Move data from memory location “sum” to register R1 (LOAD R1, sum)

e Add an immediate operand to register (R1) and store the results in R1
(ADDRL, 7)

e Store data from register R1 to memory location “sum” (STORE sum, R1).

Thus, several machine instructions may be needed (this will vary from machine to
machine) to execute a simple C statement. But, how will each of these machine
statements be executed with the help of micro-operations? Let us try to elaborate the
execution steps:

e Fetch the instructions.

e Pass the address of Program Counter (PC) to Memory Address Register
(MAR). ' :

o Issue the memory read operation to fetch instruction in the Buffer Register
for data, such as M(BR).

e Increment Program Counter to refer to next instruction in sequence and
bring instruction to Instruction Register (IR).

e Execute the instruction

Decode the instruction to ascertain operation.

e As one of the operands is already available in R1 register and the second
operand is an immediate operand so fetch operand step is not required. The
immediate operand is available in the address part of the instruction.

e Perform the ALU based addition with R1 and buffer register, store the result
in R1.

Thus, we may have to execute the instruction in several steps. For the subsequent
discussion, for simplicity, let us assume that each micro-operation can be completed
in one clock period, although some micro-operations require memory read/write that
may take more time.

Let us first discuss the type of micro-operations. The most common micro-operations
performed in a digital computer can be classified into four categories:

1) Register transfer micro-operations: simply transfer binary information from one
register to another.

2) Arithmetic micro-operations: perform simple arithmetic operations on numeric
data stored in registers.

3) Logic micro-operations: perform bit manipulation (logic) operations on non-
numeric data stored in registers.

4) Shift micro-operations registers: perform shift operations on data stored in
registers.

2.5.1 Register Transfer Micro-operations

These micro-operations, as the name suggests transfer information from one register
to another. The information does not change during these micro-operations. A register
transfer micro-operation may be designed as: R1€ R2. The € symbol implies that
the contents of register R2 are transferred to register R1. R2 here is a source register
while R1 is a destination register. We will use this notation throughout this section.
Please note the following important points about register transfer micro-operations.

e For uregister transfer micro-operation there must be a path for data transfer from
the output of the source register to the input of destination register.

e In addition, the destination register should have a parallel load capability, as we
expect the register transfer to occur in a predetermined control condition. We will
discuss more about the control unit in Unit 4 of this block.

e A common path for connecting various registers is through a common internal
data bus of the processor. In general the size of this data bus should be equal to
the number of bits in a general register. ‘

The convention used to represent the micro-operations is:

1. Computer register names are designated by capital letters (sometimes followed
by numerals) to denote its function. For example, R1, R2 (General Purpose
Registers), AR (Address Register), IR (Instruction Register) etc.

2. The individual bits within a register are numbered from 0 (rightmost bit) to n-1
~ (leftmost bit) as shown in Figure 2b). Common ways of drawing the block
diagram of a computer register are shown below. The name of the 16-bit register
is IR (Instruction Register) which is partitioned into two subfields in Figure 2d).
Bits 0 through 7 are assigned the symbol L (for Low byte) and bits 8 through 15
. are assigned the symbol H (for high byte). The symbol IR (L) refers to the low-
order byte and IR (H) refers to high-order byte.

Registers, Micro-
operations and
Instruction
Execution

39

»

N

The Central
Processing Unit

40

a) Register b) Individual bits
RO 151413 L210
15 0 15 8 7 0
Rl IR (H) IR (L)
¢) Numbering of bits d) Subfields

Figure 2: Register Formats

Information transfer from one register to another is designated in symbolic
notation by a replacement operator. For example, the statement R2 € R1 denotes
a transfer of all bits from the source register R1 to the destination register R2
during one clock pulse and the destination register has a parallel load capacity.
However, the contents of register Rl remain unchanged after the register transfer
micro-operation. More than one transfer can be shown using a ¢comma operator.

If the transfer is to occur only under a predetermined control condition, then this
condition can be specified as a control function. For example, if P is a control
function then P is a Boolean variable that can have a value of 0 or 1. It is
terminated by a colon (:) and placed in front of the actual transfer statement. The
operation specified in the statement takes place only when P = 1. Consider the
statements:

If (P=1)then (R2 € RI1)
or,
P: R2 € Rl,

Where P is a control function that can be either 0 or 1.

All micro-operations written on a single line are to be executed at the same time
provided the statements or a group of statements to be implemented together are
free of conflict. A conflict occurs if two different contents are being transferred
to a single register at the same time. For example, the statement: new line X:
R1€ R2, R1<€ R3represents a conflict because both R2 and R3 are trying to
transfer their contents to R1 at the same time.

A clock is not included explicitly in any statements discussed above. However, it
is assumed that all transfers occur during the clock edge transition immediately
following the period when the control function is 1. All statements imply a
hardware construction for implementing the micro-operation statement as shown
below:

Implementation of controlled data transfer from R2 to R1 only when T =1
T: RI€R

T= Load
Block Diagram Control] R1
Circuit - ’ Clock
[a
. . R2

Timing Diagram v ‘

Clock t A " A

Load

Transfer occurs here
Figure 3: The Register Transfer Time

It is assumed that the control variable is synchronized with the same clock as the one
applied to the register. The control function T is activated by the rising edge of the
clock pulse at time t. Even though the control variable T becomes active just after
time t, the actual transfer does not occur until the register is triggered by the next
jpositive transition of the clock at time t+1. At time t+1, load input is again active and
the data inputs of R2 are then loaded into the register R1 in parallel. The transfer
oceurs with every clock pulse transition while T remains active.

Bus and Memory Transfers

A digital computer has many registers, and rather than connecting wires between all
registers to transfer information between them, a common bus is used. Bus is a path
(consists of a group of wires) one for each bit of a register, over which information is
transferred, from any of several sources to any of several destinations.

From a register to Bus: BUS € R. The implementation of bus is explained in Unit 3
of this block. :

"The transfer from bus to register can be expressed symbolically as:

R1 « BUS,

The content of the selected register is placed on the BUS, and the content of the bus is
loaded into register R1 by activating its load control input.

Mémory Transfer

The transfer of information from memory to outside world i.e., IO Interface is called
a read operation. The transfer of new information to be stored in memory is calleda
write operation. These kinds of transfers are achieved via a system bus. It is necessary
to supply the address’ of the memory location for memory transfer operations.

Memory Read

The memory unit receives the address from a register, called the memory address
register designated by MAR. The data is transferred to another register, called the data

register designated by DR. The read operation can be stated as: L

Read:. DR € [(MAR]

Memory Write

The memory write operation transfers the content of a data register to a memory word
M selected by the address. Assume that the data of register R1 is to be written to the
memory at the address provided in MAR. The write operation can be stated as:

© . Write: [MAR] € R1

Please note, it means that the location pointed by MAR will be written and not MAR.

< Read
< Write

MAR |- —3»{ MEMORY
DR

Figure 4: Memory Transfer

Registers, Micro-
operations ancl
Instruction
Execution

41

The Central
Processing Unit

42

2.5.2 Arithmetic Micro-operations

These micro-operations perform simple arithmetic operations on numeric data
stored in registers. The basic arithmetic micro-operations are addition, subtraction,
increment, decrement, and shift.

Addition micro-operation is specified as:

R3 € R1 +R2

It means that the contents of register R1 are added to the contents of register R2 and
the sum is transferred to register R3. This operation requires three registers to hold
data along with the Binary Adder circuit in the ALU. Binary adder is a digital circuit
that generates the arithmetic sum of two binary numbers of any lengths and is
constructed with full-adder circuits connected in cascade. An n-bit binary adder
requires n full-adders. Add micro-operation, in accumulator machine, can be
performed as:

AC € AC +DR

Subtraction is most often implemented in machines through complement and adds
operations. It is specified as:

R3 € RI-R2

R3 € R1 +(2’s complement of R2)

R3 € R1 +(1’s complement of R2 + 1)

R3 € R1 +R2+ 1 (The bar on top of R2 implies 1’s complement of R2 which
is bitwise complement)

Adding 1 to the 1’s complement produces the 2’s complement. Adding the contents of
R1 to the 2’s complement of R2 is equivalent to subtracting the contents of R2 from
R1 and storing the result in R3. We will describe the basic circuit required for these
micro-operations in the next unit.

The increment micro-operation adds one to a number in a register. This operation is
designated as:

Rl € Rl +1
This can be implemented in hardware by using a binary-up counter.

The decrement micro-operation subtracts one from a number in a register. This
operation is designated as: :

Rl €RI -1
This can be implemented using binary-down counter.

What about the multiply and division operations? Are not they micro-operations? In
most of the older computers multiply and divisions were implemented using
add/subtract and shift micro-operations. If a digital system has implemented division
ar:d multiplication by means of combinational circuits, then we can call these as the
micro-operations for that system.

2.5.3 Logic Micro-operations

Logic operations are basically binary operations, which are performed on the string of
bits stored in the registers. For a logic micro-operation each bit of a register is treated
as a variable. A logic micro-operation:

R1 € R1.R2 specifies AND operation tobe performed on the contents of R1 and R2
and store the results in R1. For example, if R1 and R2 are 8 bits registers and:

R1 contains 10010011 and
R2 contains 01010101

Then R1 will contain 00010001 after AND operation.

Some of the common logic micro-operations are AND, OR, NOT or Complement,
Exclusive OR, NOR, and NAND. In many computers only four: AND, OR, XOR
(exclusive OR) and complement micro-operations are implemented.

Let us now discuss how these four micro-operations can be used in implementing
some of the important applications of manipulation of bits of a word, such as,
changing some bit values or deleting a group of bits. We are assuming that the result
of logic micro-operations go back to Register R1 and R2 contains the second operand.

We will play a trick with the manipulations we are performing. Let us select 1010 as 4
bit data for register R1, and 1100 data for register R2. Why? Because if you see the bit
combinations of R2, and R1, they represent the truth table entries (read from right to
left and bottom to top) 00, 01, 10 and 11. Thus, the resultant of the logical operation
on them will indicate which logi¢ micro-operation is needed to be performed for that
data manipulation. The following table gives details on some of these operations:

Rl 1 0 1 0
R2 1 1 0’ 0
Operation What is the Example and Explanation
name operation?
Sclective Set Sets those bits in . R1=1010

Register R1 for R2 =1100

which the | 1110 |

corresponding R2 bit | The value 1110 spggests that selective set

is 1. can be done using logic OR micro-operation.

Please note that all those bits of R1, for
which we have 0 bit in R2, have remained
unchanged. The bits in R1 which need to be
set selectively must have the corresponding

: R2 bits as 1.
Selective Clear | Clear those bits in R1=1010
register R1 for R2 =1100.
which corresponding | | 0010 |
R2 bits-are 1. The R1 value after the operation is 0010

which suggests that Corresponding micro-
operation is R AND R2

Selective Complement those R1=1010
Complement | bits in register R1 R2=1100 ;
~ | for which the | 0110 |
corresponding R2 The R1, value 0110 after the operation
bits are 1. suggests that the selective complement can

be done using exclusive - OR micro-
operation. The bits in R1 which need to be
complemented selectively must have the
corresponding R2 bits as 1.

Mask Clears tﬁose bité in R1=1010

Operations Register R1 for - R2 =1100 -
which the | 1000° | |

corresponding R2 The R1 value after the operation is 1000

Registers, Micro-
Operations and
Instruction
Execution

43

The Central
Processing Unit

44

bits are 0.

which suggests that the mask operation can
be performed using AND micro-operation.
However, the bits in R1 which are cleared or
masked correspond to the bits on R2 having
a 0 value. The mask operation is preferred
over selective clear as most of the computers
provide AND micro-operaiion while the
micro-operation required for implementing
selective clear is normally not provided in

computers
Insert For inserting a new | This is a two-step process.
value inabit. Itisa | Example:
two-step process: Say contents of R1 = 0011 1011
Step 1: Mask out the | Suppose, we want to insert 0110 in place of
existing bit value left
Step 2. Insert the bit most 0011 then:
using OR micro- 0011 1011 (R1 before)
operation with the 0000 1111 (R2 for masking)
bits which are to be Perform AND operation
inserted. (mask)
0000 1011 (R1 after) ;
Now insert: 01100000 (R2 for insertion)
—— Perform OR operation
0110 1011 R1 after insert
Clear Clear all the bits R1=1101
R2 =1101
| 0000 , |

Implemented by taking exclusive OR with
the same number. The exclusive OR, thus,
can also be used for checking whether two
numbers are equal or not.

2.5.4 Shift Micro-operations

Shift is a useful operation, which can be used for serial transfer of data. Shift
operations can also be used along with other (arithmetic, logic, etc.) operations. For
example, for implementing a multiply operation arithmetic micro-operation (addition)
can be used along with shift operation. The shift operation may result in shifting the
conterits of a register to the left or right. In a shift left operation a bit of data is input at
the right most flip-flop while in shift right a bit of data is input at the left most flip-.
flop. In both the cases a bit of data enters the shift register. Depending on what bit
enters the register and where the shift out bit goes, the shifts are classified in three

types. These are:

e logical

e arithmetic and

e circular.

In logical shift the data entering by serial input to left most or right most flip-flop
(depending on right or left shift operations respectively) is a 0.

If we connect the serial output of a shift register 4o its serial input then we encounter a
circular shift. In circular shift left or circular shift right information is not lost, but is

circulated.

In arithmetic shift a signed binary number is shifted to the left or to the right. Thus, an
arithmetic shift-left causes a number to be multiplied by 2, on the other hand a shift-
right causes a division by 2. But as in division or multiplication by 2 the sign of a

number should not be chaﬁged, therefore, arithmetic shift must leave the sign bit
urchanged. We have already discussed about shift operations in the Unit 1.

Let us summarize micro-operations using the following table:

Sk No. Micro-operations

Examples

1. Register transfer

R1 € R2 (register transfer)
[MAR] € R1 (Register to memory)

2. Arithmetic micro-
operations

ADDRI € R1 +R2

SUBTRACT R1 € R1 + (R2 +1)
INCREMENT R1 € RI1 +1
DECREMENT R1€ Rl -1

3. Logical micro operations

AND

OR
COMPLEMENT
XOR

4. Shift

Left or right shift
e Logical
¢ Arithmetic
e Circular

Check Your Progress 2

L. How does the memory read / operation carried out using system bus?

..

..

...

...

3. What will be the value for R2 operand if:

(i)b Mask operation clears register R1
(i1) Bits 1011 0001 is to be inserted in an 8 bit R1 register.

4. What are the differences between circular and logical shift micro-operations?

..

...

...

2.6 INSTRUCTION EXECUTIONS AND MICRO -

OPERATIONS

Let us now discuss instruction execution using the micro-operations. A simple

instruction may require:

request is pending.

Instruction fetch: fetching the instruction from the memory.

Instruction decode: decode the instruction.

Operand address calculation: find out the effective address of the operands.
Execuation: execute the instruction.

Interrupt Acknowledge: perform an interrupt acknowledge cycle if an interrupt

Registers, Micro- (
operations and
Instruction
Execution

The Central
Processing Unit

46

Let us explain how these steps of instruction execution can be broken down to micro-
operations. For simplifying the discussion, let us assume that the machine has the
structure as shown in Figure 1. In addition, let us also assume that the instruction set
of the machine has only two addressing modes direct and indirect memory addresses
and a memory access take same time as that of a register access that is one clock
cycle. ‘

Instruction fetch: In this phase the instruction is brought from the address pointed by

PC to instruction register. The steps required are:

Transfer the address of PC to MAR. (Register Transfer) | MAR € PC

MAR puts its contents on the address bus for main DR € (MAR), PC&
memory location selection, the control unit instructs the | PC +1

MAR to do so and also uses a memory read signal. The
word so read is placed on the data bus where it is
accepted by the Data register (Memory-read using bus,
It may take more than one clock pulses depending on
the tg,, and tyen) The PC is incremented by one memory
word length to point to the next instruction in sequence.
This micro-operation can be carried out in parallel to the
micro-operation above.

The instruction so obtained is transferred from data IR € DR
register to the Instruction register for further processing.
(Register Transfer)

Instruction Decode: This phase is performed under the control of the Control Unit of
the computer. The Control Unit determines the operation that is to be performed and
the addressing mode of the data. In our example, the addressing modes can be direct
or indirect.

Operand Address Calculation: In actual machines the effective address may be a
memory address, register or /O port address. The register reference instructions such
as complement R1, clear R2 etc. normally do not require any memory reference
(assuming register indirect addressing is not being used) and can directly go to the
execute cycle. However, the memory reference instruction can use several addressing
modes. Depending on the type of addressing the effective address (EA) of operands in
the memory is calculated. The calculation of effective address may require more
memory fetches (for example in the case of indirect addressing), thus in this step we
may.calculate the effective address as: '

For Direct Address: .

e Transfer the address portion of instruction is the | IR (Address) and DR
direct address so no further calculation is (Address) contain the
needed. Effective address.

For Indirect Address:

_ o Transfer the address bits of instruction to the MAR « DR (Address)
MAR. This transfer can be achieved using DR,
as DR and IR at this point of time contain. the
same value. (Register Transfer) DR« (MAR)

" & Perform a memory read operation as done in
fetch cycle and the desired address of the :
.operand is obtained in the DR, (Memory Read) | IR (Address) «- DR

e Transfer the address part so obtained in DR as | (Address)
the address part of instruction. (Register
Transfer) Thus, the indirect address is now
converted to direct address or effective address.

Thus, the address portion of IR now contains the effective address, which is the direct
address of the cperand.

Execution: Now the instruction is ready for execution. A different opcode will require
different sequence of steps for the execution. Therefore, let us discuss a few examples
of execution of some simple instructions for the purpose of identifying some of the
steps needed during instruction execution. Let us start the discussions with a simple
case of addition instruction. Suppose, we have an instruction: Add R1, A which adds
the content of inemory location A to R1 register storing the result in R1. This
instruction will be executed in the following steps:

Transfer the address portion of the instruction to the | MAR € IR (Address)
MAR. (Register transfer)

Read the memory location A and bring the operand | DR € (MAR)
| in the DR. (Memory read)

Add the DR with R1 using ALU and bring the results { R1 € R1 + DR
back to R1. (Add micro-operations)

Now, let us try a complex instruction - a conditional jump instruction. Suppose an
instruction;

INCSKIP A

increments A and skips the next instruction if the content of A has become zero. This
. a complex instruction and requires intermediate decision-making. The micro
nperations required for this instruction execution are:

Transfer the address portion of IR to the MAR. | MAR € IR (Address)
(Register transfer)

Read memory. DR on reading will contain the | DR € (MAR)
operand A. (Memory read)

Transfer the contents of DR to R1. We are Rl € DR
assuming that DR, although it can be used in
computation, it cannot be used as destination of
an ALU operation. Thus, we need to transfer its
content to a general purpose register R1 where
the operation can be performed. (Register
transfer)

Increment the R1. (Increment micro-operation) | R1 € R1 +1

Transfer the content of R1 to DR. (Register DR € RI
transfer) *

Store the contents of DR- into the location A (MAR) €DR
using MAR. This operation proceeds through

- as! Address bits are applied on address bus by
MAR. The data is put into the data bus. The
control unit providing control signal for
memory write, thus resulting in a memory write
at a location specified by MAR. (Memory
write)

If the content of R1.is zero then increment PC | IfR1 =0 then PC € PC +]
by one, thus skipping the next instruction. This
operation can be performed in parailel to the
memory write. Please note in the last step a
comparison and an action is taken as a single
step. This is possible as it is a simple
comparison based on status flags. (Increment
on a condition)

Registers, Micro-
operations and
instruction
Execution

The Central
Processing Unit

48-

Let us now take an example of branching operation. Suppose we are using the first

location of subroutine to store the return address, then the steps involved in this

subroutine call (CALL A) can be:

Transfer the contents of address portion of
IR to MAR. (Register Transfer)

Transfer the return address, that is, the
contents of PC to DR. This micro-operation
can be performed in parallel to the previous
micro-operation. (Register transfer)

MAR € IR (Address),

DR € PC

Transfer the branch address that is stored in
Address part of the instruction to program
counter. (Register transfer)

PC € IR (Address)

Store the DR using MAR. Thus, the return
address is stored at the first location of the
subroutine. (This operation normally is done
in stack, but in this example we are storing -~
the return address in the first location of the
subroutine). This micro-operation can be
performed in parallel to previous micro-
operation. (Memory write)

(MAR) €DR

A

Increment the PC as it contains the first
location of subroutine, which is used to store
the return address. The first instruction of
subroutine starts from the next location.
(Increment)

PCE€PC+1 ~.

instruction.

Interrupt Processing: On completion of the execution of an instruction, the machine

. Thus, the number of steps required in execution may differ from instruction to

checks whether there is any pending interrupt request for the interrupts that are

enabled. If an enabled interrupt has occurred then that Interrupt may be processed.
The nature of interrupt varies from machine to machine. However, let us discuss one
simple illustration of interrupt processing events. A simple sequence of steps followed

in interrupt phase is:

Transfer the contents of PC to DR, as this is the
return address after the interrupt service program
has been executed. This address must be saved.

DR € PC

Place the address of location, where the return
address is to be saved, into MAR. Pléase note that
this address is normally predetermined in
computers.

MAR € Address of
location for saving return
address.

Store the contents of PC in the memory using DR
and MAR. (Memory write)

Transfer the address of the first instruction of
interrupt servicing routine to the PC. This micro-
operation can be performed in parallel to the above
micro-operation. ‘

(MAR) €DR

PC € address of the first
instruction interrupt service
programs

After completing the above interrupt processing, CPU will fetch the next instruction
that may be interrupt service program instruction. Thus, during this time CPU might
be doing the interrupt processing or executing the user program. Please note each
instruction of interrupt service program is executed as an instruction in an instruction
cycle.

Please note for a complex machine the instruction cycle will not be as easy as this.
You can refer to further readings for more complex instruction cycles.

2.7 INSTRUCTION PIPELINING

After discussing instruction execution, let us now define a concept that is very popular
in any CPU implementation. This concept is instruction pipeline.

To extract better performance, as defined earlier, instruction execution can be done
through instruction pipeline. The instruction pipelining involves decomposing of an
instruction execution to a number of pipeline stages. Some of the common pipeline
stages can be instruction fetch (IF), instruction decode (ID), operand fetch (OF),
execute (EX), store results (SR). An instruction pipe may involve any combination of
such stages, A major design decision here is that the instruction stages should be of
equal execution time. Why?

A pipeline allows overlapped execution of instructions. Thus, during the course of
execution of an instruction the following may be a scenario of execution.

(TimeSlot-[1 | 2 3 4 5 6 7 8 9 10 | 11
>

Instruction | IF [ID | OF | EX | SR
1

Instruction IF | ID | OF | EX | SR
2

Instruction IF ID | OF | EX [SR
3

Instruction IF ID | OF | EX | SR

4| |

Instruction IF D OF | EX | SR
) 5 ,

Instruction IF ID | OF | EX | SR
6 H

L i
Instruction IF ID | OF | EX { SR

7

Figure 5: Instruction Pipeline

Please note the following observations about the above figure:

e The pipeline stages are like steps. Thus, a step of the pipeline is to be complete in
a time slot. The size of the time slot will be governed by the stage taking
maximum time. Thus, if the time taken in various stages is almost similar, we
get the best results.

e The first instruction execution is completed on completion of 5* time slot, but
afterwards, in each time slot the next instruction gets executed. So, in ideal
conditions one instruction is executed in the pipeline in each time slot.

o Please note that after the 5™ time slot and afterwards the pipe is full. In the 5*
time slot the stages of execution of five instructions are:

SR (instruction 1) (Requires memory reference)
EX (instruction 2) (No memory reference)
-OF (instruction 3) (Requires memory reference)
ID - (instruction 4) (No memory reference)
IF (instruction 5) (Requires memory reference)

Registers, Micro-

operations and
Instruction
Execution

49

The Central
Processing Unit

50

i) [
The Pipelining Problems:

e On the 5™ time slot and later, there may be a register or memory conflict in the
instructions that are performing memory and register references that is various
stages may refer to same registers/memory location. This will result in slower
execution instruction pipeline that is one of the higher number instruction has to
wait till the lower number instructions completed, effectively pushing the whole
pipelining by one time slot.

e Another important situation in Instruction Pipeline may be the branch instruction.
Suppose that instruction 2 is a conditional branch instruction, then by the time the
decision to take the branch is taken (at time interval 5) three more instructions
have already been fetched. Thus, if the branch is to be taken then the whole

pipeline is to be emptied first. Thus, in such cases, pipeline cannot run at full
load. ‘

How can we minimize the problems occurring due to the branch instructions?

We can use many mechanisms that may minimize the effect of branch penalty:‘

¢ To keep multiple streams in pipeline in case of branch

o Pre-fetching the next as well as instruction to which branch is to take place

¢ A loop buffer may be used to store the instructions of a loop instruction

o Predicting whether the branch will take place or not and acting accordingly

¢ Delaying the pipeline fill up till the branch decision is taken.

Check Your Progress 3

State True or False ’ . [T|F

1) An instruction cycle does not include indirect cycle if the operands are stored in
the register. -

2) Register transfer micro-operations are not needed for instruction execution. |:|

3) Interrupt cycle results only in jumping to an interrupt service routine. The actual
processing of the instructions of this routine is performed in instruction cyclel_—_l

2.8 SUMMARY

In this unit, we have discussed in detail the register organisation and a simple structure
of the CPU. After this we have discussed in details the micro-operations and their
implementation in hardware using simple logical circuits. While discussing micro-
operations our main emphasis was on simple arithmetic, logic and shift micro-
operations, in addition to register transfer and memory transfer. The knowledge you
have acquired about register sets and conditional codes, helps us in giving us an idea
that conditional micro-operations can be implemented by simply checking flags and
conditional codes. This idea will be clearer after we go through Unit 3 and Unit 4. We
have completed the discussions on this unit, with providing a simple approach of
instruction execution with micro-operations. We have also defined the concepts of

. Instruction Pipeline. We will be using this approach for discussing control unit details

in Unit 3 and Unit 4. The following table gives the details of various terms used in
this unit.

General purpose registers - These registers are used for any address
‘ or data computation / storage
Status and control register Stores the various condition codes
Programmer visible registers Used by programmers during
- programming
Micro-operations Involves register transfer micro

operations arithmetic micro-operations
like add, subtract, logic micro-operations
like AND, OR, NOT, XOR and shift
micro-operations left or right shift

Micro-operations and instruction An instruction is executed through a
execution sequence of micro-operations. Thus, a

program is executed as a sequence of
instruction is executed when a sequence
of microinstructions are executed.

Instruction pipeline Allows overlapped execution of

instructions. A good pipe can produce
one instruction per clock cycle.

You will also get the details on 8086 microprocessor register sets, condmonal codes,
_ instructions etc. in Unit 1 of Block 4.

You can refer to further readings for more register organisation examples and for
more details on micro-operations and instruction execution.

2.9 SOLUTIONS /ANSWERS

Check Your Progress 1

1.
2.
3

4.

Registers, which are used only for the calculation of operand addresses, are
called address registers.

5 bits .

It helps in implementing parallelism in the instruction execution unit.

Yes. Normally, the first few hundreds of words of memory are allocated for
storing control information.

Check Your Progress 2

1.

Read operation involves reading of location pointed to by MAR. The address bus

is loaded with the contents of MAR
address BUS €MAR
In addition a read signal is issued by control unit, and data is stored to MBR
register or data register.
DR € data BUS
The combined operation can be shown as
DR € [MAR]

Yes, if implemented through circuits.
No, if implemented through algorithms involving add/ subtract and shift micro-
operations.

Registers, Micro-
operations and
Instruction
Execution

51

The Central 3. (i) 0000 0000 .
Processing Unit e v . .
(ii) Initially AND with 0000 0000 followed by OR with 1011 0001

4. The bits circulate and after a complete cycle the data is still intact in circular

shift. Not so in logical shift.

Check Your Progress 3

1. True
2, False
3. True

52

