
14

Lab Course SECTION 2 ASSEMBLY LANGUAGE
PROGRAMMING

Structure Page No.

2.0 Introduction 14

2.1 Objectives 14

2.2 Assemblers 15

2.2.1 Turbo Assembler (TASM) 15

2.2.2 MASM 16

2.2.3 Emu 8086 18

2.2.4 The DEBUG Program 20

2.3 Assembly Programming File 22

2.4 Session-wise List of Programs 23

2.5 What Next? 28

2.6 Summary 28

2.0 INTRODUCTION

This guide is an attempt to familiarize you with some of the important Assemblers
available in the Windows environment. You may use any of these tools available as per
your study center. This practical session also contains several sample programs that you
may need to run/debug at your study center. Some minor mistakes have been created
purposely. In order to run the program, you must correct those errors. You may also find
that assembler directives used by these programs may differ. You need to look into such
details. You must also attempt the unresolved problems in order to gain the maximum
from this course. Remember, assembly and C Programming helps you greatly in System
Software implementation and giving understanding of the machine. We hope you will
enjoy these practicals.

2.1 OBJECTIVES

After going through this section, you should be able :

· develop and assemble assembly programs;

· identify and use proper assembler directives;

· design simple assembly programs;

· write programs that interface with a programming language;

· appreciate the System Software development environment; and

· appreciate a keyboard driver.

http://www.abbyy.com/buy
http://www.abbyy.com/buy

15

Assembly Language
Programming2.2 ASSEMBLERS

Assembler is the Program that supports an environment for translating assembly language
programs to Machine executable files, that is, an assembly program containing statements
like MOV AL, 10h and directives like MODEL SMALL, which are meaningless to the
microprocessor and so are converted to an equivalent machine program. Thus, the
assembler program is a translator that does almost a similar type of work as a compiler.
But, how is a compiler different than an assembler? One of the major differences to note
here is that each high level statement of a C program on compilation will produce many
machine statements; whereas an assembly instruction is generally translated to single
instruction. We would like to reiterate here that assembly and machine languages is
machine dependent and programs written in assembly for one microprocessor may not
run on other microprocessors.

An assembler, generally, converts an assembly program to an executable file. There are
two standard forms of executable files on DOS. These are: .com files and .exe files.
These files basically differ in format as per the segments of the 8086 Microprocessor.
(Please refer to Unit 1 of Block 4 of MCS – 012). The steps of the assembly process are:

Step Result
Assemble the source program using
an assembler

· Creates an object file with extension .obj.
· Creates an optional listing file (.lst) and a

file for cross reference
Link the Object file or files · Creates an executable (.exe) file

· Creates optional map file (.map) and library
file (.lib)

Convert the executable files to com
file which are fast

· This is an optional step

There are many assemblers that support the above tasks in different ways; even the
options available with them are quite different. Let us discuss the basic options available
with the commonly used assemblers/interfaces for running assembly programs. You may
use any of the following depending on the availability of tools at your center.

2.2.1 Turbo Assembler (TASM)

Assembling

Turbo Assembler allows a user to assemble multiple files. Each file may be assigned its
own options in a single command line. TASM allows you to use * and ? wild cards, as
they exist in DOS. For example, to assemble all the programs having file names like
progam1.asm, program2.asm, program3.asm, you may just give the command:

TASM program? (.asm extension is the default extension).

The turbo assembler allows you to assemble programs in groups. Each group is separated
by a + sign. Two of the most common options for turbo assembler are:

http://www.abbyy.com/buy
http://www.abbyy.com/buy

16

Lab Course /L Generates the list file (.lst)
/Z displays source line having errors.

A common use of command line may be:
TASM /Z program1

Newer and advanced versions of these assemblers are also available.

Cross-Reference Files : On assembling a program, a cross-reference file of the
programs labels, symbols, and variables can be created with an extension of .xrf. You
can use TCREF command to convert this listing to a sorted cross-reference file. For more
details please refer to Turbo Assembler help.

Linking : The command line for linking a TASM program is:

 TLINK object_filename, executable_filename [,map_filename] [,library_filename]

The default extension for object filename is .obj

· The executable file is created with extension .exe file.

· Map file have a .map extension. The map file is used to indicate the relative location,
size of each segment and any errors that the linker has found. The map file can also
be displayed on screen. You need to enter con (for console), for such display.

· Library file is used for specifying library option.

Converting Object Files to .COM Programs : TLINK command allows you to convert
an object program directly to .COM format:

TLINK /T object_filename, com_filename, con

Debugging Options : You can use Turbo Debugger by using the /ZI command line
option on the assembler.

2.2.2 MASM

There are many versions available with the Microsoft MASM. Let us discuss the two
latest versions of it.

MASM 6.1

This is one of the versions of Assemblers. It accepts commands of the older versions also.
The command that can be used for assembling the program is ML command. This
command has the following format:

ML [options] filenames_containing.asm [[options] filenames.asm] [/link options]

Please note that in the above command the terms enclosed within [] are optional.

The options start with a / and some common options are:
 /AT To directly convert the assembled file to .com program
 /c Assemble the file but do not link it (separate assembly)

http://www.abbyy.com/buy
http://www.abbyy.com/buy

17

Assembly Language
Programming

 /Fl Generate a listing (.lst) file
 /Zd Include line number in debugging information

Some simple examples of usage of ML command may be:
 ML /c firstprogram.asm

This command will only assemble the file.

 ML /AT/Zd first.asm second.asm

This program will create .com file after assembling and linking the two files.

MASM 5.1
This is an old version of Microsoft assembler. It requires separate steps for assembling,
linking, and converting into .com file. The command line format for this assembler is:
MASM [options] source.asm [,objectfilename.obj] [,listfilename.lst] [,crossreffilename]

You need not specify the .asm extension in the above format, as it is taken by default,
similarly, you need not assign .obj and .lst extensions which are assigned by default.
Each file may have its own path and filename, which may be different from the source
file path.

The following command creates object and cross-reference files with the same name with
the suitable extension.

MASM filename,,,

The options relating to MASM are:
/L To create a listing (.lst) file
/Z To display source lines having errors on the screen
/ZI Include line-number and symbolic information in the object file

For getting further explanation on these options using the help of MASM, please type:
MASM /H.

Cross-Reference Files : On assembling a program, a cross-reference file of the
programs labels, symbols, and variables can be created with an extension of .crf. For
more details please refer to Macro Assembler help.

Linking : The command line for linking a MASM 5.1 program is:
 LINK object_filename, executable_filename [,map_filename] [,library_filename]

Most of the option and file names as above are the same as that of TASM.

You can also link more than one object files to one executable file by using the command
like:

LINK prosgram1 + program2 + program3

http://www.abbyy.com/buy
http://www.abbyy.com/buy

18

Lab Course Converting MASM 5.1 Object Files to .COM Programs. The EXE2BIN program
available in DOS converts .EXE modules generated by MASM into .COM modules.

Assembler Tables

The important tables of assemblers that are available in the .lst listings are:

Segments and Groups Table: The following details are contained in this table.

Name Length Alignment Combine
types

Segment Class

Provides the
names of all the
segments and
groups in
alphabetical
order.

Provides the
size, in hex, of
each segment

Provides the
alignment type,
such as BYTE,
WORD, or
PARA.

Lists the
defined
combine type,
such as
STACK,
NONE when
no type is
coded, etc.

Lists the
segment names,
as coded in the
SEGMENT
statements

Symbol table: This table contains the following details:

Name Type column Value column Attribute column
Lists the names of
all defined items, in
alphabetical order

L NEAR or L FAR
(Specifies a near or
far label)
N PROC or F
PROC (Specifies a
near or far
Procedure)
BYTE, WORD,
DWORD, etc.
(Specify a data
item) etc.

Provides the hex
offset from the
beginning of a
segment for names,
labels, and
procedures.

Lists the attributes
of a symbol,
including its
segment and length.

2.2.3 Emu 8086

This is an emulator Programming that can be used for executing/testing/ emulating 8086
programs. The Program was available at website http://www.emu8086.com. This
program is priced. The following are some of the salient points of this package:

· It contains a source editor, assembler, dis-assembler, and software emulator for
assembly program with debugger, and step-by-step tutorials.

· It is helpful for those who just begin to study assembly language. It compiles the
source code and executes it on emulator step by step. This is a very useful feature.
You must see the changed values with each step. The emulator has an easy Visual

http://www.emu8086.com/
http://www.abbyy.com/buy
http://www.abbyy.com/buy

19

Assembly Language
Programming

interface, which allows watching registers, flags and memory contents during the
program execution. You can also watch stack.

· Arithmetic & Logical Unit (ALU) shows the last operation executed by ALU,
especially arithmetic operations like addition. This will enhance your understanding.

· Please note, as the 8086 machine code is fully compatible with all the next
generations of Intel's microprocessors, including Pentium II and Pentium 4. This
8086 code is very portable, since it runs both on old and on the modern computer
systems. Another advantage of 8086 instruction set is that it is smaller, and thus
easier to learn.

How to start Emu 8086?

1. Start Emu8086 by selecting the ICON from the desktop, or by running Emu8086.exe.
The following window appears:

2. For referring to already stored samples you can select sample button.

3. You can use your own programs also stored in suitable .asm files.

4. You can compile or emulate the Program.

5. Click Single Step button and watch how the code is being executed.

Using Emulator

If you want to load your code into the emulator to watch the effect of step by step
execution on registers, flags, stach etc you must select the emulate option this is a great
learning tool; just click "Emulate" button . On selecting emulate button you will see
the following window.

http://www.abbyy.com/buy
http://www.abbyy.com/buy

20

Lab Course

You can press the buttons at the bottom to watch other windows also along with your
program. Please notice even memory offset values as shown and effect can be seen over
them also.

You can use single step button to execute next instruction. Watch the effect of this single
step on Instruction Pointer (IP), and other registers.

If you double click on register text-boxes it will open "Extended Viewer" window with
value of that register converted to all possible forms. You can change the value of the
register directly in this window.

Double click on memory list item; it will open "Extended Viewer" with WORD value
loaded from memory at selected location. Lower byte is at lower address that is: LOW
BYTE is loaded from selected position and HIGH BYTE from next memory address.
You can change the value of the memory word directly in the "Extended Viewer"
window.

You can change the values of registers on runtime by typing over the existing values
shown.

Flags button allows viewing and showing the flags set by the last ALU operations. The
ALU button shows the ALU temporary register. The stack button shows the current stack
values.

2.2.4 The DEBUG Program

The DOS DEBUG program is a useful tool for writing and debugging assembly
programs. This also allows for examining the contents of a file or memory. DEBUG.EXE
is available in DOS in a directory named \DOS or in Windows 95/98 by selecting the

http://www.abbyy.com/buy
http://www.abbyy.com/buy

21

Assembly Language
Programming

MS-DOS prompt from Start Menu. You may run DEBUG in a window. You can also use
cut and paste through clipboard.

Starting Debugger : type DEBUG and press <Enter>.

DEBUG starts and a prompt, a hyphen (-), appears on the screen. DEBUG is now ready
to accept your commands.

The following simple options exist for starting DEBUG:

1. To create a file or examine memory, type just DEBUG
2. To modify or debug a program (.COM or .EXE) type DEBUG <file name>. The file

name should have a suitable path.

Some Tips

· Initially CS, DS, ES, and SS registers have the address of the 256-byte (100H). This
initial size is referred to Program Segment Prefix (PSP). The actual user program
work area starts after this.

· The flags of Debug appear as:

Flag
Name

When ON When OFF

Overflow OV Overflow NV No overflow
Direction DN Descending

down
UP Ascending

upwards
Interrupt EI Interrupts are

enabled
DI Interrupts are

disabled
Sign NG Negative PL Positive
Zero ZR ZERO value NZ Non zero

value
Auxiliary
Carry

AC Auxiliary
Carry

NA No auxiliary
carry

Parity PE Even parity PO Odd parity
Carry CY Carry NC No carry

· Memory address is assigned using segment:offset pair. Please note that the data
segment for .EXE programs begins at DS:0, whereas that for .COM program begins
DS: 100 (same as instruction)

· DEBUG assumes all numbers entered to be hexadecimal, so you need not type
trailing H.

· F1 key duplicates the previous command one character at a time.
· F3 duplicates the entire previous command.
· DEBUG commands are not case sensitive.

Some Commands of DEBUG

Let us look into some of the important commands of debug:

http://www.abbyy.com/buy
http://www.abbyy.com/buy

22

Lab Course

Command Meaning Purpose
A Assemble Translates assembly source statements into

machine code. The operation is especially
useful for writing and testing small assembly
programs and for examining small segments of
code.

C Compare Compares the contents of two areas of
memory. The default register is DS.

D Display Displays the contents of a portion of memory
in hex and ASCII. The default register is DS.

G Go Executes a machine language program that you
are debugging through to a specified
breakpoint.

I Input Inputs and displays one byte from a port, coded
as I port-address.

N Name Names a program or a file that you intend to
read from or write onto disk. Code the
command as N filename.

O Output Sends a byte to a port, coded as O port –
address byte.

Q Quit Exits DEBUG. The operation does not save
files; use W for that purpose.

R Register Displays the contents of registers and the next
instruction.

S Search Searches memory for characters in a list. If the
characters are found the operation delivers their
addresses; otherwise it does not respond. The
default register is DS.

T Trace Executes a program in single –step mode. Note
that you should normally use P (Proceed) to
execute through INT instructions. The default
registers are CS:IP.

U Unassemble Unassembles machine instructions, that is,
converts them into symbolic code. The default
registers are CS:IP.

W Write Writes a file from DEBUG. The file should
first be named (see N) if it wasn’t already
loaded. The default register is CS.

2.3 ASSEMBLY PROGRAMMING FILE

You must maintain a file for keeping each Assembly program. The file should contain the
following:

1. The overall description or explanation of your program.

2. Write the logical flow of program and algorithm steps.

3. Assembly code listings with comments.

4. Testing of program and different register values.

5. Please note any error encountered /any other experience during the programming

http://www.abbyy.com/buy
http://www.abbyy.com/buy

23

Assembly Language
Programming

Following is an example which may help you in writing assembly programs:

Problem

Write a program to display “Hello IGNOU!”

Algorithm Steps

1. Start
2. Store ‘Hello IGNOU!’ in variable named msg
3. Load address of the variable msg to DX register
4. Print using DOS interrupt using function 9 (Recollect function 9 requires 9 to be

loaded in register AH followed by a call to Interrupt 21h.)
5. Exit to operating system. Once the message has been printed, it successfully

terminates the program by returning to operating system. (Remember this is achieved
by moving “4C” to AH register and calling Interrupt 21h)

Program

 ; DISPLAY Hello IGNOU!
; Standard header:
 ORG 100H
; Jump to start:
 JMP START
; Data:
msg DB 'Hello, IGNOU!','$'
; Load address of msg to DX register:
START: LEA DX, msg
; Print using DOS interrupt:
 MOV AH, 9
 INT 21h
; Exit to operating system:
 MOV AH, 4Ch
 INT 21h

2.4 SESSION WISE LIST OF PROGRAMS

The total number of sessions allotted for Circuit Design and Assembly Prgramming are
10. Out of these, the first two sessions have already been covered in Section 2: Circuit
Design. Thus, in this section we will have only 8 sessions; numbered 3 to 10.

Write the following program in 8086 assembly language.

Sessions 3 and 4: Simple Assembly Programs (2 sessions & 14 programs)

1. Write a program to add two numbers present in two consecutive memory locations
and store the result in next memory location.

http://www.abbyy.com/buy
http://www.abbyy.com/buy

24

Lab Course Memory
Number1
Number2
Result

2. Develop program to read a character from console and echo it.

3. Develop and execute a program to read 10 chars from console.

4. Write a program to exchange two memory variables using MOV and XCHG
instruction. Can you do it with just XCHG?

5. Write a program to find the sum of two BCD numbers stored in memory.

6. Write a program, which will read two decimal numbers, then multiply them
together, and finally print out the result (in decimal).

7. Write a program to convert the ASCII code to its BCD equivalent.

8. Write a program, which will read in two decimal inputs and print out their sum, in
decimal.

9. Write a program, which will read in two decimal inputs and print out the smaller of
the two, in decimal.

10. Write a program to calculate the average of three given numbers stored in memory.

11. Write a program in 8086 assembly language to find the volume of sphere using
following formula: V = 4/3p r3

12. Write a program to evaluates 3 * (x^3) + 4x + 5 if flag = = 1 or evaluates 7x + 8 if
flag = = 0.Assume x is a 16-bit unsigned integer.

13. Write a program to convert Centigrade (Celsius) to Fahrenheit temperature
measuring scales. Using formula: Celsius = (Fahrenheit - 32) * 5 / 9

14. Write a Program which adds the sales tax in the Price list of items and replace the
Price list with a new list.

Sessions 5, 6 and 7: Loop and Comparisons (3 sessions & 21 programs)

1. Write a program to find the factorial of decimal number given by user.

2. Write a program to find nCr for a given n and r.

3. Write a program to arrange given N numbers in descending order.

http://www.abbyy.com/buy
http://www.abbyy.com/buy

25

Assembly Language
Programming

4. Write a program, which will read in decimal inputs repeatedly until a zero value is
read; at this point, it should print out the sum of the numbers read in so far.

5. Develop and execute an assembly language program to find the LCM of two 16-bit
unsigned integers.

6. Develop and execute an assembly language program to find the HCF of two
unsigned 16-bit numbers.

7. Write a program for finding the largest number in an array of 10 elements.

8. Develop and execute a program to sort a given set of 8-bit unsigned integers into
ascending order.

9. Develop and execute an assembly language program to sort a given set of 16-bit
unsigned integers into descending order.

10. Write a Program which adds the sales tax in the Price list of items and replace the
Price list with calculated values.

11. Write a program to Convert ASCII number into decimal digit.

12. Write a Program for performing the following operation.
 Z=((A-B)/10*C) ** 2

13. Write a Program for adding an array of Binary Digits.

14. Write a Program, which takes the input of 4-digit number, and display the sum of
square of digits as given below.
Example: Input = 4721

42+72+22+12 = 16+49+4+1
Result = 70. (Display)

15. Using the method of "add-and-shift" loop, in which you use the binary digits of one
number to control additions of a shifted version of the other number into a running
total; this is essentially the same algorithm you use when multiplying numbers by
hand in decimal.

http://www.abbyy.com/buy
http://www.abbyy.com/buy

26

Lab Course 16. Write a Program, which should adds two 5-byte numbers (numbers are stored in
array- NUM1 & NUM2), and stores the sum in another array named RESULT.

17. Write a program which should convert 4 digits BCD number into its binary
equivalent.

18. Write a program to conduct a binary search on a given sorted array of 16-bit,
unsigned integers, and a given 16-bit unsigned key.

19. Write a program to convert a string in upper case to lower case or lower case to
upper case.

20. Develop cryptographic algorithm where each letter is replaced by a different letter.
Given the mapping of characters to encoded characters, it is simple to translate
from encoded to decoded data. Write a Program, which encodes the string into the
ASCII value but not corresponding ASCII value; shift 5 place left in ASCII and
write the encoding string.

21. Similarly write another Program to Decoding with respect to above problem.

Session 8: Strings (1 session and 7 programs)

1. Write a program, which takes two inputs as strings and display the Concatenated
string.

2. Write a program, which converts string lower case characters to upper case
characters and upper case characters to lower case characters.

3. Write a program for reversing a given string.

4. Write a program, which converts string to its ASCII value and store in array.
5. Write a program to find if two strings are equal length: and if the strings are found

to be of equivalent length then are they the same, if not the same then which string
is lexicographically greater.

6. Write a program to determine a given string is a palindrome. If 'Yes' output the
message “The given string is a palindrome”. If 'No' output the message “No, it is
not a palindrome”.

7. Write a program to search for a character in a given string and calculate the number
of occurrences of the character in the given string.

Session 9: Procedural call and Interrupts (1 session & 7 programs)

1. Write a program that will compute a grade for this class based on grades input into
it. Write two different procedures one for computing total marks based of different
examinations held and another for computing overall grade of student

http://www.abbyy.com/buy
http://www.abbyy.com/buy

27

Assembly Language
Programming

 Procedures-I: The total marks will be computed as follows:
 20% Midterm Exam
 20% Final Project
 30% Quizzes
 30% Projects

Procedure-II: The letter grade will be computed from the overall grade as
follows:

 93+: A
 90+: A-
 87+: B+
 83+: B
 80+: B-
 77+: C+
 73+: C
 70+: C-
 65+: D
 0+: F

2. Write a Drive detection program. The program should determines whether the drives.
a. Exist
b. Are removable or fixed
c. Are local, remote, or shared
d. Are a floppy, hard, RAM or CD-ROM drive

3. Write a program, which will produce 2 ms delay.

4. Write a program to display the current system time using DOS INT 21H, function
4CH.

5. Write a procedure, which takes one character from console at 10-second intervals,
and stores each character in one array of characters.

6. Write a program, which will generate an interrupt when there is a division by zero.

7. Write a program to implement character array, which can store only the character
values in the array and using this array try to reverse a string.

Session 10: Interfacing assembly with HLL (1 session & 3 programs)

1. Write the corresponding 8086 assembly language code of the following program
given in C++ language.

#include <iostream.h>
int n, sum, k;

void main()

http://www.abbyy.com/buy
http://www.abbyy.com/buy

28

Lab Course {
cout << "Enter number: ";
cin >> n;
sum = 0;
k = 1;
while (K <= sum)
{
sum += k;
++k;
}
cout << "The sum = ";
cout << sum;
cout << '\n';
}

2. Write a program in which it call a routine or function made in c of name fact. The
fact functional calculates the factorial of a given number, call that function in
assembly program and find the factorial of the given number. Store the result in
memory.

3. Write a program, which convert ASCII number into its equivalent binary in
assembly code. Call this program in C and display the result on user screen.

2.5 WHAT NEXT?

You must use the skills acquired through the practical in order to develop efficient
functions/subroutines, device drivers, interrupt servicing programs etc. Thus, you can
further go on to do a lot of important things using Assembly Programming Language and
extracting some useful efficient work using Microcomputers. You must refer to further
readings as given in MCS 012 Block 4 in order to do so.

2.6 SUMMARY

This section is an attempt to provide details on Assembly Language Programming
practice. The problems have primarily been divided into 8 sessions covering simple,
arrays loops, functions, interrupt handling, calling assembly program from C etc. You
must attempt all the problems in the specified number of sessions. In order to complete
the tasks as above, you must come prepared with paper-based assembly programs and
should test them at the center for any possible errors. Please note, that the assembly
programs may look cumbersome, but give you a lot of power on machine. They allow
you to understand the machine more closely and use it more efficiently.

http://www.abbyy.com/buy
http://www.abbyy.com/buy

	StructurePage No.
	StructurePage No.
	StructurePage No.
	StructurePage No.
	StructurePage No.
	StructurePage No.
	Assembling
	MASM 6.1

	MASM 5.1

	Assembler Tables
	Assembler Tables
	Name
	Type column
	Value column
	Attribute column
	Attribute column
	Attribute column
	Some Tips

	Following is an example which may help you in writing assembly programs:
	Problem
	Problem
	Problem
	Problem
	Problem
	Algorithm Steps
	Program

	Sessions 5, 6 and 7: Loop and Comparisons (3 sessions & 21 programs)
	Session 8: Strings (1 session and 7 programs)
	Session 9: Procedural call and Interrupts (1 session & 7 programs)
	Session 10: Interfacing assembly with HLL (1 session & 3 programs)

