

5

Decision and L oop
Control

Statements
UNIT 5 DECISION AND LOOP CONTROL

STATEMENTS

Structure

5.0 Introduction
5.1 Objectives
5.2 Decision Control Statements

5.2.1 The if Statement
5.2.2 The switch Statement

5.3 Loop Control Statements
5.3.1 The while Loop

 5.3.2 The do-while Statement
 5.3.3 The for Loop
 5.3.4 The Nested Loop
5.4 The Goto Statement
5.5 The Break Statement
5.6 The Continue Statement
5.7 Summary
5.8 Solutions / Answers
5.9 Further Readings

5.0 INTRODUCTION

A program consists of a number of statements to be executed by the computer. Not
many of the programs execute all their statements in sequential order from beginning
to end as they appear within the program. A C program may require that a logical test
be carried out at some particular point within the program. One of the several possible
actions will be carried out, depending on the outcome of the logical test. This is called
Branching. In the Selection process, a set of statements will be selected for execution,
among the several sets available. Suppose, if there is a need of a group of statements
to be executed repeatedly until some logical condition is satisfied, then looping is
required in the program. These can be carried out using various control statements.

These Control statements determine the “flow of control” in a program and enable us
to specify the order in which the various instructions in a program are to be executed
by the computer. Normally, high level procedural programming languages require
three basic control statements:

• Sequence instruction
• Selection/decision instruction
• Repetition or Loop instruction

Sequence instruction means executing one instruction after another, in the order in
which they occur in the source file. This is usually built into the language as a default
action, as it is with C. If an instruction is not a control statement, then the next
instruction to be executed will simply be the next one in sequence.

Selection means executing different sections of code depending on a specific
condition or the value of a variable. This allows a program to take different courses of
action depending on different conditions. C provides three selection structures.

• if
• if…else
• switch

6

Control Statements,
Arrays and
Functions

Repetition/Looping means executing the same section of code more than once. A
section of code may either be executed a fixed number of times, or while some
condition is true. C provides three looping statements:

• while
• do…while
• for

This unit introduces you the decision and loop control statements that are available in
C programming language along with some of the example programs.

5.1 OBJECTIVES

After going through this unit you will be able to:

• work with different control statements;
• know the appropriate use of the various control statements in programming;
• transfer the control from within the loops;
• use the goto, break and continue statements in the programs; and
• write programs using branching, looping statements.

5.2 DECISION CONTROL STATEMENTS

In a C program, a decision causes a one-time jump to a different part of the program,
depending on the value of an expression. Decisions in C can be made in several ways.
The most important is with the if...else statement, which chooses between two
alternatives. This statement can be used without the else, as a simple if statement.
Another decision control statement, switch, creates branches for multiple alternative
sections of code, depending on the value of a single variable.

5.2.1 The if Statement

It is used to execute an instruction or sequence/block of instructions only if a
condition is fulfilled. In if statements, expression is evaluated first and then,
depending on whether the value of the expression (relation or condition) is “true” or
“false”, it transfers the control to a particular statement or a group of statements.

Different forms of implementation if-statement are:

• Simple if statement
• If-else statement
• Nested if-else statement
• Else if statement

Simple if statement

It is used to execute an instruction or block of instructions only if a condition is
fulfilled.

The syntax is as follows:

if (condition)
 statement;

where condition is the expression that is to be evaluated. If this condition is true,
statement is executed. If it is false, statement is ignored (not executed) and the
program continues on the next instruction after the conditional statement.

7

Decision and Loop
Control

Statements

This is shown in the Figure 5.1 given below:

 Figure 5.1: Simple if statement

If we want more than one statement to be executed, then we can specify a block of
statements within the curly bracets { }. The syntax is as follows:

if (condition)
 {
 block of statements;
 }

Example 5.1

Write a program to calculate the net salary of an employee, if a tax of 15% is levied
on his gross-salary if it exceeds Rs. 10,000/- per month.

/*Program to calculate the net salary of an employee */

#include <stdio.h>
main()
{
float gross_salary, net_salary;

printf(“Enter gross salary of an employee\n”);
scanf(“%f ”,&gross_salary);

if (gross_salary <10000)
 net_salary= gross_salary;
if (gross_salary >= 10000)
 net_salary = gross_salary- 0.15*gross_salary;

printf(“\nNet salary is Rs.%.2f\n”, net_salary);
}

OUTPUT

Enter gross salary of an employee
9000
Net salary is Rs.9000.00

Enter gross salary of any employee
10000
Net salary is Rs. 8500.00

8

Control Statements,
Arrays and
Functions

If … else statement

If…else statement is used when a different sequence of instructions is to be executed
depending on the logical value (True / False) of the condition evaluated.

Its form used in conjunction with if and the syntax is as follows:

if (condition)
Statement _1;

 else
Statement_ 2;

statement_3;

Or

if (condition)
 {
 Statements_1_Block;
 }
else
 {
 Statements_2_Block;
 }
Statements _3_Block;

If the condition is true, then the sequence of statements (Statements_1_Block)
executes; otherwise the Statements_2_Block following the else part of if-else
statement will get executed. In both the cases, the control is then transferred to
Statements_3 to follow sequential execution of the program.
This is shown in figure 5.2 given below:

 Figure 5.2: If…else statement

Let us consider a program to illustrate if…else statement,

Example 5.2

Write a program to print whether the given number is even or odd.

9

Decision and Loop
Control

Statements

/* Program to print whether the given number is even or odd*/
#include <stdio.h>
main ()
{
int x;
printf(“Enter a number:\n”);
scanf("%d",&x);
if (x % 2 == 0)
 printf(“\nGiven number is even\n”);
else
 printf(“\nGiven number is odd\n”);
}

OUTPUT

Enter a number:
6
Given number is even

Enter a number
7
Given number is odd

Nested if…else statement

In nested if… else statement, an entire if…else construct is written within either the
body of the if statement or the body of an else statement. The syntax is as follows:

if (condition_1)
 {
 if (condition_2)
 {
 Statements_1_Block;
 }

 else
 {
 Statements_2_Block;
 }
 }

else
 {
 Statements_3_Block;
 }
Statement_4_Block;

Here, condition_1 is evaluated. If it is false then Statements_3_Block is executed and
is followed by the execution of Statements_4_Block, otherwise if condition_1 is true,
then condition_2 is evaluated. Statements_1_Block is executed when condition_2 is
true otherwise Statements_2_Block is executed and then the control is transferred to
Statements_4_Block.

This is shown in the figure 5.3 given in the next page:

10

Control Statements,
Arrays and
Functions

Figure 5.3: Nested if…else statement

Let us consider a program to illustrate Nested if…else statement,

Example 5.3

Write a program to calculate an Air ticket fare after discount, given the following
conditions:
• If passenger is below 14 years then there is 50% discount on fare
• If passenger is above 50 years then there is 20% discount on fare
• If passenger is above 14 and below 50 then there is 10% discount on fare.

/* Program to calculate an Air ticket fare after discount */

#include <stdio.h>
main()
{
int age;
float fare;
printf(“\n Enter the age of passenger:\n”);
scanf(“%d”,&age);
printf(“\n Enter the Air ticket fare\n”);
scanf(“%f”,&fare);
if (age < 14)

fare = fare - 0.5 * fare;
else

if (age <= 50)
 {
 fare = fare - 0.1 * fare;
 }
 else
 {
 fare = fare - 0.2 * fare;
 }

printf(“\n Air ticket fare to be charged after discount is %.2f”,fare);
}

11

Decision and Loop
Control

Statements

OUTPUT
Enter the age of passenger
12
Enter the Air ticket fare
2000.00
Air ticket fare to be charged after discount is 1000.00

Else if statement

To show a multi-way decision based on several conditions, we use the else if
statement. This works by cascading of several comparisons. As soon as one of the
conditions is true, the statement or block of statements following them is executed and
no further comparisons are performed. The syntax is as follows:

if (condition_1)
 {
 Statements_1_Block;
 }
 else if (condition_2)
 {
 Statements_2_Block;
 }

 else if (condition_n)
 {
 Statements_n_Block;
 }
else
 Statements_x;

Here, the conditions are evaluated in order from top to bottom. As soon as any
condition evaluates to true, then the statement associated with the given condition is
executed and control is transferred to Statements_x skipping the rest of the
conditions following it. But if all conditions evaluate false, then the statement
following final else is executed followed by the execution of Statements_x. This is
shown in the figure 5.4 given below:

Figure 5.4: Else if statement

12

Control Statements,
Arrays and
Functions

Let us consider a program to illustrate Else if statement,

Example 5.4

Write a program to award grades to students depending upon the criteria mentioned
below:
• Marks less than or equal to 50 are given “D” grade
• Marks above 50 but below 60 are given “C” grade
• Marks between 60 to 75 are given “B” grade
• Marks greater than 75 are given “A” grade.

/* Program to award grades */
#include <stdio.h>
main()
{
int result;
printf("Enter the total marks of a student:\n");
scanf("%d",&result);
if (result <= 50)
 printf("Grade D\n");
 else if (result <= 60)
 printf("Grade C\n");
 else if (result <= 75)
 printf("Grade B\n");
 else
 printf("Grade A\n");
}

OUTPUT
Enter the total marks of a student:
80
Grade A

Check Your Progress 1

1. Find the output for the following program:

#include <stdio.h>
main()
{

 int a=1, b=1;
 if(a==0)
 if(b==0)
 printf(“HI”);
 else
 printf(“Bye”);

}

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

2. Find the output for the following program:

#include <stdio.h>
main()
{

13

Decision and Loop
Control

Statements

 int a,b=0;
 if (a=b=1)
 printf(“hello”);
 else
 printf(“world”);

}
…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

5.2.2 The Switch Statement

Its objective is to check several possible constant values for an expression, something
similar to what we had studied in the earlier sections, with the linking of several if and
else if statements. When the actions to be taken depending on the value of control
variable, are large in number, then the use of control structure Nested if…else makes
the program complex. There switch statement can be used. Its form is the following:

switch (expression){
case expression 1:
 block of instructions 1
 break;
case expression 2:
 block of instructions 2
 break;
.
.
default:
 default block of instructions
}

It works in the following way: switch evaluates expression and checks if it is
equivalent to expression1. If it is, it executes block of instructions 1 until it finds the
break keyword, moment at finds the control will go to the end of the switch. If
expression was not equal to expression 1 it will check whether expression is
equivalent to expression 2. If it is, it will execute block of instructions 2 until it finds
the break keyword.

Finally, if the value of expression has not matched any of the previously specified
constants (you may specify as many case statements as values you want to check), the
program will execute the instructions included in the default: section, if it exists, as it
is an optional statement.

Let us consider a program to illustrate Switch statement,

Example 5.5

Write a program that performs the following, depending upon the choice selected by
the user.
i). calculate the square of number if choice is 1

ii). calculate the cube of number if choice is 2 and 4
iii). calculate the cube of the given number if choice is 3
iv). otherwise print the number as it is

main()
{
int choice,n;

14

Control Statements,
Arrays and
Functions

printf(“\n Enter any number:\n “);
scanf(“%d”,&n);
printf(“Choice is as follows:\n\n”);
printf(“1. To find square of the number\n”);
printf(“2. To find square-root of the number\n”);
printf(“3. To find cube of a number\n”);
printf(“4. To find the square-root of the number\n\n”);
printf(“Enter your choice:\n”);
scanf(“%d”,&choice);
switch (choice)
{
 case 1 : printf(“The square of the number is %d\n”,n*n);
 break;
 case 2 :
 case 4 : printf(“The square-root of the given number is %f”,sqrt(n));
 break;
 case 3: printf(“ The cube of the given number is %d”,n*n*n);
 default : printf(“The number you had given is %d”,n);
 break;
}
}
OUTPUT

Enter any number:
 4

Choice is as follows:
1. To find square of the number
2. To find square-root of the number\n");
3. To find cube of a number
4. To find the square-root of the number

Enter your choice:
2
The square-root of the given number is 2

In this section we had discussed and understood various decision control statements.
Next section explains you the various loop control statements in C.

5.3 LOOP CONTROL STATEMENTS

Loop control statements are used when a section of code may either be executed a
fixed number of times, or while some condition is true. C gives you a choice of three
types of loop statements, while, do- while and for.

• The while loop keeps repeating an action until an associated condition returns

false. This is useful where the programmer does not know in advance how
many times the loop will be traversed.

• The do while loop is similar, but the condition is checked after the loop body is
executed. This ensures that the loop body is run at least once.

• The for loop is frequently used, usually where the loop will be traversed a fixed
number of times.

5.3.1 The While Loop

When in a program a single statement or a certain group of statements are to be
executed repeatedly depending upon certain test condition, then while statement is
used.

15

Decision and Loop
Control

Statements

The syntax is as follows:

while (test condition)
{
 body_of_the_loop;
}

Here, test condition is an expression that controls how long the loop keeps running.
Body of the loop is a statement or group of statements enclosed in braces and are
repeatedly executed till the value of test condition evaluates to true. As soon as the
condition evaluates to false, the control jumps to the first statement following the
while statement. If condition initially itself is false, the body of the loop will never be
executed. While loop is sometimes called as entry-control loop, as it controls the
execution of the body of the loop depending upon the value of the test condition. This
is shown in the figure 5.5 given below:

 Figure 5.5: The while loop statement

Let us consider a program to illustrate while loop,

Example 5.6

Write a program to calculate the factorial of a given input natural number.

/* Program to calculate factorial of given number */

#include <stdio.h>
#include <math.h>
#include <stdio.h>
main()
{
int x;
long int fact = 1;
printf(“Enter any number to find factorial:\n”); /*read the number*/
scanf(“%d”,&x);
while (x > 0)
 {
 fact = fact * x; /* factorial calculation*/
 x=x-1;
 }
printf(“Factorial is %ld”,fact);

16

Control Statements,
Arrays and
Functions

}

OUTPUT

Enter any number to find factorial:
4
Factorial is 24

Here, condition in while loop is evaluated and body of loop is repeated until condition
evaluates to false i.e., when x becomes zero. Then the control is jumped to first
statement following while loop and print the value of factorial.

5.3.2 The do...while Loop

There is another loop control structure which is very similar to the while statement –
called as the do.. while statement. The only difference is that the expression which
determines whether to carry on looping is evaluated at the end of each loop. The
syntax is as follows:

do
{
 statement(s);
} while(test condition);

In do-while loop, the body of loop is executed at least once before the condition is
evaluated. Then the loop repeats body as long as condition is true. However, in while
loop, the statement doesn’t execute the body of the loop even once, if condition is
false. That is why do-while loop is also called exit-control loop. This is shown in the
figure 5.6 given below.

 Figure 5.6: The do…while statement

Let us consider a program to illustrate do..while loop,

Example 5.7

Write a program to print first ten even natural numbers.

/* Program to print first ten even natural numbers */
#include <stdio.h>
main()
{

17

Decision and Loop
Control

Statements

int i=0;
int j=2;
do {
 printf(“%d”,j);
 j =j+2;
 i=i+1; } while (i<10); }

OUTPUT
2 4 6 8 10 12 14 16 18 20

5.3.3 The for Loop

for statement makes it more convenient to count iterations of a loop and works well
where the number of iterations of the loop is known before the loop is entered. The
syntax is as follows:

for (initialization; test condition; increment or decrement)
{
 Statement(s);
}

The main purpose is to repeat statement while condition remains true, like the while
loop. But in addition, for provides places to specify an initialization instruction and an
increment or decrement of the control variable instruction. So this loop is specially
designed to perform a repetitive action with a counter.

The for loop as shown in figure 5.7, works in the following manner:

1. initialization is executed. Generally it is an initial value setting for a counter
variable. This is executed only once.

2. condition is checked, if it is true the loop continues, otherwise the loop finishes and
statement is skipped.

3. Statement(s) is/are executed. As usual, it can be either a single instruction or a
block of instructions enclosed within curly brackets { }.

4. Finally, whatever is specified in the increment or decrement of the control variable
field is executed and the loop gets back to step 2.

 Figure 5.7: The for statement

18

Control Statements,
Arrays and
Functions

Let us consider a program to illustrate for loop,

Example 5.8

Write a program to print first n natural numbers.

/* Program to print first n natural numbers */

#include <stdio.h>
main()
{
int i,n;
printf(“Enter value of n \n”);
scanf(“%d”,&n);
printf(“\nThe first %d natural numbers are :\n”, n);
for (i=1;i<=n;++i)
 {
 printf(“%d”,i);
 }
}
OUTPUT

Enter value of n
6
The first 6 natural numbers are:
1 2 3 4 5 6

The three statements inside the braces of a for loop usually meant for one activity
each, however any of them can be left blank also. More than one control variables can
be initialized but should be separated by comma.

Various forms of loop statements can be:

(a) for(;condition;increment/decrement)
 body;
 A blank first statement will mean no initialization.

(b) for (initialization;condition;)
 body;
 A blank last statement will mean no running increment/decrement.

(c) for (initialization;;increment/decrement)
 body;

A blank second conditional statement means no test condition to control the exit
from the loop. So, in the absence of second statement, it is required to test the
condition inside the loop otherwise it results in an infinite loop where the control
never exits from the loop.

(d) for (;;increment/decrement)
 body;

Initialization is required to be done before the loop and test condition is checked
inside the loop.

(e) for (initialization;;)
 body;

19

Decision and Loop
Control

Statements

Test condition and control variable increment/decrement is to be done inside the
body of the loop.

(f) for (;condition;)
 body;

Initialization is required to be done before the loop and control variable
increment/decrement is to be done inside the body of the loop.

(g) for (;;;)
 body;

Initialization is required to be done before the loop, test condition and control
variable increment/decrement is to be done inside the body of the loop.

5.3.4 The Nested Loops

C allows loops to be nested, that is, one loop may be inside another. The program
given below illustrates the nesting of loops.

Let us consider a program to illustrate nested loops,

Example 5.9

Write a program to generate the following pattern given below:

 1
1 2
1 2 3
1 2 3 4

/* Program to print the pattern */

#include <stdio.h>
main()
{
int i,j;
for (i=1;i<=4;++i)
 {
 printf("%d\n",i);
 for(j=1;j<=i;++j)
 printf("%d\t",j);
 }
}
Here, an inner for loop is written inside the outer for loop. For every value of i, j
takes the value from 1 to i and then value of i is incremented and next iteration of
outer loop starts ranging j value from 1 to i.

Check Your Progress 2

1. Predict the output :

 #include <stdio.h>
 main()
 {

 int i;
 for (i=0;i<=10;i++,printf(“%d ”,i));

 }
…………………………………………………………………………………

…………………………………………………………………………………

20

Control Statements,
Arrays and
Functions

2. What is the output?

 #include <stdio.h>
 main()
 {
 int i;
 for(i=0;i<3;i++)
 printf("%d ",i);
 }
…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

3. What is the output for the following program?

 #include <stdio.h>
 main()
 {
 int i=1;
 do
 {
 printf(“%d”,i);
 }while(i=i-1);
}

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

4. Give the output of the following:

#include <stdio.h>
main()
{
 int i=3;
 while(i)
 {
 int x=100;
 printf(“\n%d..%d”,i,x);
 x=x+1;
 i=i+1;
 }

 }
…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

5.4 THE goto STATEMENT

The goto statement is used to alter the normal sequence of program instructions by
transferring the control to some other portion of the program. The syntax is as follows:

goto label;

21

Decision and Loop
Control

Statements

Here, label is an identifier that is used to label the statement to which control will be
transferred. The targeted statement must be preceded by the unique label followed by
colon.

label : statement;

Although goto statement is used to alter the normal sequence of program execution
but its usage in the program should be avoided. The most common applications are:

i). To branch around statements under certain conditions in place of use of if-
else statement,

ii). To jump to the end of the loop under certain conditions bypassing the rest of
statements inside the loop in place of continue statement,

iii). To jump out of the loop avoiding the use of break statement.

goto can never be used to jump into the loop from outside and it should be preferably
used for forward jump.

Situations may arise, however, in which the goto statement can be useful. To the
possible extent, the use of the goto statement should generally be avoided.

Let us consider a program to illustrate goto and label statements.

Example 5.10

Write a program to print first 10 even numbers

/* Program to print 10 even numbers */

#include <stdio.h>
main()
{
 int i=2;
 while(1)

 {
 printf(“%d ”,i);
 i=i+2;
 if (i>=20)
 goto outside;
 }

 outside : printf(“over”);
}

OUTPUT
 2 4 6 8 10 12 14 16 18 20 over

5.5 THE break STATEMENT

Sometimes, it is required to jump out of a loop irrespective of the conditional test
value. Break statement is used inside any loop to allow the control jump to the
immediate statement following the loop. The syntax is as follows:

break;

When nested loops are used, then break jumps the control from the loop where it has
been used. Break statement can be used inside any loop i.e., while, do-while, for and
also in switch statement.

Let us consider a program to illustrate break statement.

22

Control Statements,
Arrays and
Functions

Example 5.11

Write a program to calculate the first smallest divisor of a number.

/*Program to calculate smallest divisor of a number */

#include <stdio.h>
main()
{
int div,num,i;
printf(“Enter any number:\n”);
scanf(“%d”,&num);
for (i=2;i<=num;++i)
 {
 if ((num % i) == 0)
 {
 printf(“Smallest divisor for number %d is %d”,num,i);
 break;
 }
 }
}
OUTPUT
Enter any number:
9
Smallest divisor for number 9 is 3

In the above program, we divide the input number with the integer starting from 2
onwards, and print the smallest divisor as soon as remainder comes out to be zero.
Since we are only interested in first smallest divisor and not all divisors of a given
number, so jump out of the for loop using break statement without further going for
the next iteration of for loop.

Break is different from exit. Former jumps the control out of the loop while exit stops
the execution of the entire program.

5.6 THE continue STATEMENT

Unlike break statement, which is used to jump the control out of the loop, it is
sometimes required to skip some part of the loop and to continue the execution with
next loop iteration. Continue statement used inside the loop helps to bypass the
section of a loop and passes the control to the beginning of the loop to continue the
execution with the next loop iteration. The syntax is as follows:

continue;

Let us see the program given below to know the working of the continue statement.

Example 5.12

Write a program to print first 20 natural numbers skipping the numbers divisible by 5.

/* Program to print first 20 natural numbers skipping the numbers divisible by 5 */

#include <stdio.h>
main()
{
 int i;
 for (i=1;i<=20;++i)
 {

23

Decision and Loop
Control

Statements

 if ((i % 5) == 0)
 continue;
 printf(“%d ”,i);
 }
}

OUTPUT

1 2 3 4 6 7 8 9 11 12 13 14 16 17 18 19

Here, the printf statement is bypassed each time when value stored in i is divisible by
5.

Check Your Progress 3

1. How many times will hello be printed by the following program?
 #include <stdio.h>
 main()
 {
 int i = 5;
 while(i)
 {
 i=i-1;
 if (i==3)
 continue;
 printf(“\nhello”);
 }
 }
…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

2. Give the output of the following program segment:
#include <stdio.h>
main()
{
int num,sum;
for (num=2,sum=0;;)
 {
 sum = sum + num;
 if (num > 10)
 break;
 num=num+1;
 }
 printf("%d",sum);

 }
…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

3. What is the output for the following program?

#include <stdio.h>
main()
{
 int i, n = 3;

24

Control Statements,
Arrays and
Functions

 for (i=3;n<=20;++n)
 {
 if (n%i == 0)
 break;
 if (i == n)
 printf(“%d\n”,i);
 }
}

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

5.7 SUMMARY

A program is usually not limited to a linear sequence of instructions. During its
process it may require to repeat execution of a part of code more than once depending
upon the requirements or take decisions. For that purpose, C provides control and
looping statements. In this unit, we had seen the different looping statements provided
by C language namely while, do…while and for.

Using break statement, we can leave a loop even if the condition for its end is not
fulfilled. It can be used to end an infinite loop, or to force it to end before its natural
end. The continue statement causes the program to skip the rest of the loop in the
present iteration as if the end of the statement block would have reached, causing it to
jump to the following iteration.

Using the goto statement, we can make an absolute jump to another point in the
program. You should use this feature carefully since its execution ignores any type of
nesting limitation. The destination point is identified by a label, which is then used as
argument for the goto instruction. A label is made of a valid identifier followed by a
colon (:).

5.8 SOLUTIONS / ANSWERS

Check Your Progress 1

1 Nothing

2 hello

Check Your Progress 2

1 1 2 3 4 5 6 7 8 9 10 11

2 0 1 2

3 1 0 2

4 3..100
 2..100
 1..100

…..
…..
…...
till infinity

25

Decision and Loop
Control

Statements

Check Your Progress 3

1 4 times

2 65

 3 3

5.9 FURTHER READINGS

1. The C programming language, Brain W. Kernighan, Dennis M. Ritchie, PHI.
2. Programming with C, Second Edition, Byron Gottfried, Tata McGraw Hill,

2003.
3. C,The Complete Reference, Fourth Edition, Herbert Schildt, Tata McGraw Hill,
4. 2002.
5. Computer Science: A Structured Programming Approach Using C, Second

Edition, Behrouz A. Forouzan, Richard F. Gilberg, Brooks/Cole Thomas
Learning, 2001.

6. The C Primer, Leslie Hancock, Morris Krieger, Mc Graw Hill, 1983.

	5.2.1 The if Statement
	
	
	
	
	
	
	Simple if statement
	Figure 5.1: Simple if statement

	OUTPUT
	If … else statement
	Nested if…else statement

	OUTPUT
	Enter the age of passenger
	Else if statement
	Check Your Progress 1
	
	5.2.2 The Switch Statement

	5.3.1 The While Loop
	
	
	5.3.3 The for Loop
	5.4 THE goto STATEMENT
	Example 5.11

	5.6 THE continue STATEMENT

