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3.0 INTRODUCTION 

In the previous units, we have discussed the basic configuration of computer system 
von Neumann architecture, data representation and simple instruction execution 

' 

paradigm. But 'How does a computer actually perform computations?'. Now, we will 
attempt to find answer of this basic query. In this unit, you will be exposed to some 
of the basic components that form the most essential parts of a computer. You will 
come across terms like logic gates, binary adders, logic circuits and combinational 
circuits etc. These circuits are the backbone of any computer system and knowing 
them is quite essential. The characteristics of integrated digital circuits are also 
discussed in this unit. 

3.1 OBJECTIVES 

After going through this unit you will be able to : 

define logic gates; 
describe the significance of Boolean algebra in digital circuit design; 
describe the necessity of minimizing the number of gates in design; 
describe how basic mathematical operations, viz. addition and subtraction, are 
performed by computer; and 
define and describe some of the useful circuits of a computer system such as 
multiplexer, decoders, ROM etc. 

3.2 LOGIC GATES 

A logic gate is an electronic circuit which produces a typical output signal depending 
on its input signal. The output signal of a gate is a simple Boolean operation of its 
input signal. Gates are the basic logic elements that produce signals ofbinary I or 0. 

We can represent any Boolean function in the form of gates. 

:n ger~cral we car1 represent each gat< rl~rough a distinct graphic syrnbol and its 
operation can be given b) means of aigcbraic expresbion. To represent the input- 
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output relationship of binary variables in each gate, truth tables are used. The Principles of Logic 

notations and truth -tables for different logic gates are given in Figure 3.1. Circuits I 

GraphlcSyrnbol Algebraic function Truth Table 

NOT A F 

~ 
I 

I 

I 

I 

Figure 3.1: Logic Gates 

The truth table of NAND and NOR can be made from NOT (A AND B) and NOT 
(A OR B) respectively. Exclusive OR (XOR) is a special gate whose output is one 

only if the two inputs are not equal. The inverse of exclusive OR, called as XNOR 
gate, can be a comparator which will produce a 1 output if two inputs are equal. 

The digital circuits use only one or two types of gates for simplicity in fabrication 
purposes. Therefore, one must think in terms of functionally complete set of gates. 
What does functionally complete set imply? A set of gates by which any Boolean 
function can be implemented is called a functionally complete set. The hnctionally 
complete sets are: [AND, NOT], [NOR], [NAND], [OR, NOT]. 
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Circuits 3.3 LOGIC CIRCUITS 

A Boolean function can be implemented into a logic circuit using the basic gates:- 
AND , OR & NOT. Consider, for example, the Boolean function: - 
F (A,B,C) = A B + C 

The relationship between this function and its binary variables A, B, C can be 
represented in a truth table as shown in figure 3.2(a) and figure 3.2(b) shows the 
corresponding logic circuit. 

A (b) Logic Cqcuit 
1 

Figure 3.2 : Truth table & logic diagram for F = A B + C 

(a) Truth Table 

Thus, in a logic circuit, the variables coming on the left hand side of boolean 
expression are inputs to circuit and the variable function coming on the right hand side 
of expression is taken as output. 

Here, there is one important point to note i.e. there is only one way to represent the 
boolean expression in a truth table but can be expressed in variety of logic circuits. 
How? [try to find the answer] 

Check Your Progress 1 

1)  What are the logic gates and which gates are called as Universal gates. 
.................................................................................................................................... 

2) Simplify the Boolean function: F = A + B + A + B {(=-=I i-I1 

.................................................................................................... 

3) Draw the logic diagram of the above function. 



- 

4) Draw the logic diagram of the simplified function. Principles of Logic 
Circuits I 

I .................................................................................................................................... ~ ..................................................................................................................................... 

5 )  Show implementation of AND, NOT and OR Operations using NAND gates. 

.................................................................................................... 

.................................................................................................... I 

.................................................................................................... 
I 

3.4 COMBINATIONAL CIRCUIT I 

~ 
Combinational circuits are interconnected circuits of gates according to certain rules 
to produce an output depending on its input value. A well-formed combinational 
circuit should not have feedback loops. A combinational circuit can be represented as 
a network of gates and, therefore, can be expressed by a truth table or a Boolean 
expression. 

The output of the combinational circuit is related to its input by a combinational I 
function, which is independent of time. Therefore, for an ideal combinational circuit 
the output should change instantaneously according to changes in input. But in actual I 

I 

case there is a slight delay. The delay is normally proportional to depth or number of 
levels i.e. the maximum numbers of gates on any path from input to output. For 
example, the depth of the combinational circuit in figure 3.3 is 2. 

F = X Y + X Y  

Figure 3.3 : A two level AND-OR combinational circuit 

The basic design issue related to combinational circuits is: the Minimization of 
number ofgates. The normal circuit constraints for combinational circuit design are : 

The depth of the circuit should not exceed a specific level, 
Number of input lines to a gate (fan in) and to how many gates its output can be 
fed (fan out) are constraint by the circuit power constraints. 

3.4.1 Canonical and Standard Forms 

An algebric expression can exist in two fonns : 
- - 

i) Sum of Products (SOP) e.g. (A . ) 1- ( ,4 . B ) 
. -- - 

ii) Product of Sums (POS) e.g. ( A 4 B ) . (A i I31 

If a product term of SOP expression contains every variable of that functio~l either in 
true or complement form then it is defined as a Mintemt or Standard Product. This , 

minterm will be true only for one combination of illput values of the variables. For 
example, in the SOP expression 

- - 
F(A.B.C)=(A.B.C)+ ( A . R . C ) + ( A . R )  

- -- 

We have three product terms namely A.B.C, . A .  B .C and A.R. Hut only first two of 
then1 qualifies to be a minterm, as the third one does not contain variable C or its 
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complement. In addition, the term A.B.C will be one only if A = 1, B = 1and.C = 1, 
for any other combination of values of A, B, C the minterm A.B.C will have 0 value. 
Similarly, the minterm. A B . C will have value 1 only if A = 1, B = 1 and C = 1 (It 
implies A=O, B=O and C=l) for any other combination of values the minterm will 
have a zero value. " 

Similar type of term used in POS form is called Maxterm or Standard Sum. 
Maxterm is a term of POS expression, which contains all the variables of the function - - 
in true or complemented form. For example, F (A, B, C) = (A + B + C). ( A  + B  + C) 
has two maxterms. A maxterm has a value 0, for only one combination of input 
values. 

The maxterm A + B+C will has 0 value'only for A = 0, B = 0 and C = 0 for all other 
combination of values of A, B, C it will have a value 1. 

Figure 3.4 indicates the 2" different minterms and maxterms where n is number of 
variables. 

* 
1 Variable's Value I Minterm I Maxterm I 

a I b I c I Term I Representation I Term I Representation 
I 

- - 
0 1 0 a b c  m2 a + b + c  

- - - 
M2 

0 1 1 a b c  m3 a + b + c  M3 

- 
1 1 0  1 I a i c  I m5 1 a + b + S  1 MI 

Figure 3.4: Maxterms and Miqterms for 3 variables 

We can represent any Boolean function alegebrica?ly directly in minterm and maxterm 
form from the truth table. For minterms, consider each combination of variables that 
produces a I output in function and then taking OR of all those terms. For example, 
the function F in figure 3.5 is represented in minterm form by ORing the terms where - - -  
theoutputFis I i.e. a b c ,  a b c  a bc ,  a b c  & a b c .  

Figure 3.5: Function of three variables 

- -  - 
Thus, F(a,b,c) = a  b c + a  b c  + a b c + a b c  + a b c  

= m , + m 2 + m 3 + m 6 + m 7  



The complement of function F can be obtained by ORing of the minterms Principles, of Logic 
Circuits I corresponding to the combinations that produce a 0 output in function. Thus, 

- - - -  
F (a,b,c)  = a b c  + a  b c  + a  b c 

If we take the complement of ? , we get the function F in maxterm form. 
- - - - -  --- ---  

F(a ,b , c )=  ( F ) =  ( a b c + a  b c + a b c ) = ( a b c ) . ( a  b i ) . ( a  bc) 
= ( a + b + c ) ( i + b + c ) ( a + b + z  ) [DeMorgan'slaw] 

The product symbol Il stands for ANDing the maxterms. 

Here, you will appreciate the fact that the terms which were missing in minterm form I 

are present in maxterm form. Thus if any form is known then the other form can be 
directly formed. 

The Boolean function expressed as a sum of minterms or product of maxterms has the 
property that each and every literal of the function should be present in each and every 
term in either normal or complemented form. 

3.4.2 Minimization df Gates 
I 

The simplification of Boolean expression is very useful for combinational circuit 
design. The following three methods are used for this: 

Algebraic Simplification 
Karnaugh Maps 
Quine McCluskey Method 

Algebraic Simplification 

We have already discussed algebraic simplification of logic circuit. An algebraic 
expression can exist in POS or SOP forms. Let us examine the following example to 
understand how it helps in implementing any logic circuit. 
Example : Consider the function F (a,b,c) = a b c + a b c + a b . The logic circuit 

implementation of this function is shown in fig 3.6(a). 

(a) ~ = a G c + a % c + ~ b  
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(b) F = a b c +  a b c + a b  

Figure 3.6 : Two logic diagrams for same boolean expression 

The expression F can be simplified using boolean algebra. 

F(a,b,c) = a b c + a b c + a b  
- - - 

= a b ( c + c ) + a b  [ a s  c +  c = I ]  

= a@b 

The logic diagram of the simplified expression is drawn in fig 3.6 (b) using NOT. OR 
and AND gates (the same operation can be performed by using a single XOR gate). 
Thus the number of gates are reduced to 5 gates (2 inverters, 2 AND gates & I OR) 
instead of 7 gates. (3 inverters, 3 AND & 1 OR gate). 

The algebraic function can appear in many different forms although a process of 
simplification exists yet it is cumbersome because of absence of routes which tell 
what rule to apply next. The Karnaugh map is a simple direct approach of 
simplification of logic expressions. 

Karnaugh Maps 

Karnaugh maps are a convenient way of representing and simplifying Boolean 
function of 2 to 6 variables. The stepwise procedure for Karnaugh map is. 

Step 1 : Create a simple map depending on the number of variables in the function. 
Figure 3.7(a) shows the map of two, three and four variables. A map of 2 
variables contains 4 value position or elements, while for 3 variables it has 
23 = 8 elements. Similarly for 4 variables it is Z4 =I6 elements and so on. 
Special care is taken to represent variables in the map. The value of only 
one variable changes in two adjacent columns or rows. The advantage of 
having change in one variable is that two adjacent cloumns or rows 
represent a true or complement form of a single variable. 

For example, in figure 3.7(a) the columns which have positive A are 
adjacent ind so are the column for A. Please note the adjacency of the 
corners. The right most column can be considered to be adjacent to the first 
column since they differ only by one variable and are adjacent. Similarly 
the top most and bottom most rows are adjacent 

Dee~nial 4 H C 
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Decimal A B C D 

0  0 0  0 0  
1 0  0  0 I 
2 0  0  1 0  
3 0 0  1 1 
4 0  1 0  0  
5 0  1 0  I 
6 0  1 I 0 
7 0  1 1 1 
8 I 0  0 0  
9 1 - 0  0 1 
10 1 0  1 0  
I I 1 0 1 1 
12 I 1 .  0  0 
13 I 1 0 1 
14 1 1 1 0  
15 I 1 1 1 

Principles o T Logic 
Circuits I 

- 
D Ti 

F o u r  Variables 

I ~ 
(a) Maps for 2 ,3  and 4 variables 

Type of adjacencies for 8 squares 

(b) Possible adjacencies 

Figure 3.7: Maps and their adjacencies 

Please note: 

I )  Decimal equivalents of column are given for help in understanding where the 
position of the respective set lies. It is not the value filled in the square. A 
square can contain one or nothing. 

2) The 00,O 1, 1 1 etc written on the top implies the value of the respective 

3) Wherever the value of a variable is 0 it is said to represent its compliment form. 
4) The value of only one variable changes when we move from one row to the next 

row o t  one column to the next column. 

Step 2: The next step in Karnaugh map is to map the truth table into the map. The I 

mapping is done by putting a 1 in the respective square belonging to the 1 I 

value in the truth table. This mapped map is used to arrive at simplified 
Boolean expression which then can be used for drawing up the optimal 
logical circuit. Step 2 will be more clear in the example. 

Step 3: Now, create simple algebraic expression from the K-Map. These 
expressions are created by using adjacency if we have two adjacent 1's then 

. the expression for those can be simplified together since they differ only in 
1 variable. Similarly, we search for the adjacent pairs of 4 , s  and so on. A 1 
can appear in more than one adjacent pairs. We should search for octets 
first then quadrets and then for doublets. The following example will clarify 



Introduction to Digital Example: Now, let us see how to use K map simplification for finding the 
Circuits Boolean function for the cases whose truth table is given in figure 3.8(a) 

and 3.8(B) shows the K-Map for this. 

Decimal A B C D output F 

0 0 0 0 0 1 

1 0 0 0 1 1 

2 0 0 1 0 1 

3 0 0 1 1 0 

4 0 1 0 0 0 

5 0 1 0 1 0 

6 0 1 1 0 I 

7 0 1 1 1 0 OrF = C ( 0 ,  1,2,6, 8,9, 10) 

. 8 1 0 0 0 1 

9 1 0 0 1 1 

10 1 0 1 0 1 

11 I 0 1 1 0 

12 1 1 0 0 0 

13 1 I 0 I 0 

14 1 1 1 0 0 

15 1 1 1 I 0 

(a) Truthtable 

(b) Karnaugh's map 

Figure 3.8 : Truth table & K-Map of Function F =x (0,1,2,6,8,9,10) 

Let us see what the pairs which can be considered as adjacent in the Karnaugh's here. 

The pairs are: 

1 ) The four comers 
2) The four 1's as in top and bottom in column 00 & 0 1 
3) The two 1's in the top two rows of last column. 

The comers can be represented by the expressions : 

1) Four comers 
---- -- --- 

= ( A  B c D + A  B C  D l +  (AB c D + A E c D )  - - - -- - 
= A B D ( C + C ) + A  B D (c+c) --- [as c + c  = 11 

= A B D + A B D  -- - 
0 = B D ( A + A )  -- 

= B D  
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~ 
2) The four 1's in column 00 and 01 gives the following terms Pr ir ipkv  of  Logic ~ 

Circuits I 
- - - 

= ( A B C D + A B C D ) + ( A  B C D + A B C D )  
I 

- -- - -- - 
= A B C ( D + D ) + A B  C ( D + D )  

~ 
--- 

= A B C + A B C  
- - 

= B C  

3) The two 1's in the last columns 
-- - 

= A B C D + A B C D  - - -  I 
= A C D  ( B + B )  - - 
= A C D  I 

Thus, the Boolean expression derived from this K-Map is 
- -  -- - - 

F = B D + B C + A C D  

[Note : This expression can be directly obtained from the K-Map after making 
quadrets and doublets. Try to find how ?] 

The expressions so obtained through K-Maps are in the forms of the sum'of the 
product form i.e. it is expressed as the sum of the products of the variables. This I 

expression can be expressed in product of sum form, but for this special method are 
required to be used [already discussed in last section]. 

I 
I 

Let us see how we can modify K-Map simplification to obtain POS form. Suppose in I 

the previous example instead of using 1 we combined the adjacent 0 squares then we 
will obtain the inverse function and on taking transform of this function we will get 
the POS form. 

Another important aspect about this simple method of digital circuit design is 
DONOT care conditions. These conditions further simplify the algebraic function. 
These conditions imply that it does not matter whether the output produced is 0 or 1 
for the specific input. These conditions can occur when the combination of the 
number of inputs are more than needed. For example, calculation through BCD where 
4 bits are used to represent a decimal digit implies we can represent 24 = 16 digits but 
since we have only 10 decimal digits therefore 6 of those input combination values do 
not matter and are a candidate for DONOT care condition. 

I 

For the purpose of exercises you can do the exercise from the reference [l],  [2] ,[3] 
given in Block introduction. 

What will happen if we have more than 4- 6 variables? As the numbers of variables 
increases K-Maps become more and more cumbersome as the numbers of possible 
combinations of inputs keep on increasing. 

Quine McKluskey Method 
I 

A tabular method was suggested to deal with the increasing number of variables 
known as Quine McKluskey Method. This method is suitable for programming and 
hence provides a tool for automating design in the form of minimizing Boolean 

which are redundant and can be obtained by other terms. 

To understand Quine - Mc Kluskey method, lets us see following example:- 

Given, F (A,B,C,D,E) = ABCDE + ABCD E + A B  C DE + A BCDE + -- - --- - - - - - - - 
A B C D E + A  B C D E + A B  C D E + A  B C D E  

69 
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Step I: The terms of the function are placed in table as follows: 

Step 11 : Forming the pairs which differ in only one variable, a l s ~  put check (v) 
against the terms selected and finding resultant terms as follows :- 

AB CD }-+q 
A B C D  E  
--- 

A B C D E  

- - - 
A B C D E  ---- 
A B C D E  

In the new terms, again find all the terms which differ only in one variable and put a 

check (m) across those terms i.e. 

- - 
B C D E  -- --- B  C  E  
B C D E  J I I 

Step 111 : Now, constructing final table as : 

ABCDE ABCDE A B C D E  A B C D E  ABCD ABcDE A B C D E  A B C D E  

A B C E  m m 
- 
A CDE m m 
- - 
B  C E  13 13 rn m 

Thus all columns have mark 'X'. Thus the final expression is: 

F (A,B,c,D,E) = A B C E + A C D E  + B E E  

The process can be summarised as follows:- 



Step I : Build a table in which each term of the expression is represented in row 
(Expression should be in SOP form). The terms can be represented in the 
0 (Complemented) or 1 (normal) form. 

Step 11 : Check all the terms that differ in only one variable and then combine the 
pairs by removing the variable that differs in those terms. Thus a new 
table is formed. 

This process is repeated, if necessary, in the new table also until all 
uncommon terms are left i.e. no matches left in table. 

l 

a) Finally, a two dimensional table is formed all terms which are not I 
I 

eliminated in the table form rows and all original terms form the column. 
b) At each intersection of row and column where row term is subset of column 

term, a 'X' is placed. 

a) Put a square around each 'X' which is alone in column 
b) Put a circle around each 'X' in any row which contains a squared 

'X' 
c) If every column has a squared or circled 'X' then the process is complete 1 

and the corresponding minimal expression is formed by all row terms which ~ 
have marked Xs. 

Check Your Progress 2 

1) Prepare the truth table for the following boolean expressions: 
-- - - 

(i) A B C + A B C  
- - 

(ii) ( A + B ) . ( A + B )  

2 Simplify the following functions using algebraic simplification procedures and 
draw the logic diagram for the simplified function. 

(i) F = ( ( A . B ) + B )  
- -- 

( i i )  F = ( ( A . B ) . ( A  B ) )  

..................................................................................................................................... 
...................................................................................................... 
...................................................................................................... 
................................................................................................ L..... 

...................................................................................................... 

...................................................................................................... 

3) Simplify the following boolean functions in SOP and POS forms by means of 

Also draw the logic diagram. 

F (A,B,C,D) = C (0,2,8,9,10,11,14,15) 

..................................................................................................................................... 

...................................................................................................... 

...................................................................................................... 

...................................................................................................... 



Introduction to Digital 
Circuits 3.5 DESIGN OF COMBINATIONAL CIRCUITS 

The digital circuits, which we use now-a-days, are constructed with NAND or NOR 
gates instead of AND-OR-NOT gates. NAND & NOR gates are called Universal 
Gates as we can implement any digital system with these gates. To prove this point 
we need to only show that the basic gates : AND , OR & NOT, can be implemented 
with either only NAND or with only NOR gate. This is shown in figure 3.9 below: 

4 - D - x  

(JII F = (A + B) A 

(NOT) 

Figure 3.9 : Basic Logic Operations with NAND and NOR gates 

Any Boolean expression can be implemented with NAND gates, by expressing the 
function in sum of product form. 

Example: Consider the function F (A, B, C) = 2 (1,2,3,4,5,7). Firstly bring it in 
SOP form. Thus, from the K-Map shown in figwe 3.1 O(a), we find 

(a) K-Map (b) Logic circuit using NAND only 

Figure 3.10: K-Map & Logic circuit for function F (A. B, C) = 2 (1,2,3.1,5,7). 



I 

Similarly, any Boolean expression can be implemented with only NOR gate by Principles of  Logic ~ 
expressing in POS form. Let us take same example, F (A, B, C) = C (1,2,3,4,5,7). Circuits I I 

I 
As discussed in section 3.4.1, the above function F can be represented in POS form as 

F (A, B, C) = n (0.6) ~ 

=(x+B+c).(A+B+c)= (x+B+?)(A.+B+c) 

I 

I 

Figure 3.1 1 : Logic circuit for function F (A, B, C) = C (1,2,3,4,5,7) using NOR gates 

After discussing so much about the design let us discuss some important 
combinational circuits. We will not go into the details of their design in this unit. 

3.6 EXAMPLES OF COMBINATIONAL 
CIRCUITS 

The design of combinational circuits can be demonstrated with some basic 
combinational circuits like adders, decoders, multiplexers etc. Let us discuss each of 
these examples briefly. 

3.6.1 Adders 

Adders play one of the most important roles in binary arithmetic. In fact fixed point 
addition is often used as a simple measure to express processor's speed. Addition and 
subtraction circuit can be used as the basis for i~nplementation of multiplication and 
division. ( we are not giving details of these, you can find it in Suggested Reading). 

Thus, considerable efforts have been put in designing of high speed addition and 1 

substrnction circuits. It is considered to be an important task since the time of I 

Babbage. Number codes are also responsible for adding to the complexity of 
arithmetic circuit. The 2's complement notation is one of the most widely used codes 

A combinational circuit which performs addition of two bits is called a halfadder, 
while the combinational circuit which performs arithmetic addition of three bits (the 
third bit is the previous carry bit) is called a full adder. 

In half adder the inputs are: 

73 
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Inputs Carry Sum 

X Y C S 

0 0 0 0 
0 1 0 1 
1 0 0 1 
1 1 I 

Inputs Carry Sum 

X Y P C S 

0 0 0 0 0 
0 0 1 0 1 
0 1 0 0 1 
0 1 1 1 0 
1 0 0 0 1 
1 0 1 1 0 
1 1 0 1 0 
1 1 1 1 1 

(a) Truth table 
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P 

(d) Logic diagram (e) Block Diagra m 

Figure 3.13 : Full-adder implementation 

Three adjacencies marked a,b,c in K-Map of 'C' are 

a) x y p  +XYP 

= X P ( Y + Y )  
= x p  

- 
b) XYP + X Y P  

= x y  
- 

c) XYP+XYP 

Thus, C = x p + x y + y p  

In case of K-Map for 'S', there are no adjacencies. Therefore, 
- - 

s = x y p + x  y p + x y p + x y p  

Till now we have discussed about addition of bit only but what will happen if we are 
actually adding two numbers. A number in computer can be 4 byte i.e. 32 bit long or 
even more. Even for these cases the basic unit is the full adder. Let us see (for 
example) how can we construct an adder which adds two 4 bit numbers. Let us 
assume that the numbers are: x3 x2 X I  x,, and y3 y2 yl yo; here x, and y, (i = 0 to 3) 
represent a bit. The 4-bit adder is shown in figure 3.14. 

Figure 3.14 : 4-bit Adder 
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The overall sum is represented by S3 Sz S1 So and over all carry is C3 from the 4th bit 
adder. The main feature of this adder is that carry of each lower bit is fed to the next 
higher bit addition stage, it implies that addition of the next higher bit has to wait for 
the previous stage addition. This is called ripple carry adder. The ripple carry becomes 
time consuming when we are going for addition of say 32 bit. Here the most 
significant bit i.e. the 32nd bits has to wait till the addition of first 3 1 bits is complete. 

Therefore, a high-speed adder, which generates input carry bit of any stage directly 
from the input to previous stages was developed. These are called carry lookahead 
adders. In this adder the carry for various stages can be generated directly by the logic 
expressions such as: 

Co = xo yo 

C1 = X l  y,  + (XI + y,) co 
The complexity of the look ahead carry bit increases with higher bits. But in turn it 
produces the addition in a very small time. The carry look ahead becomes increasingly 
complicated with increasing numbers of bits. Therefore, carry look ahead adders are 
normally implemented for adding chunks of 4 to 8 bits and the carry is rippled to next 
chunk of 4 to 8 bits carry look ahead circuit. 

Adder- subtractor 

The subtraction operation on binary numbers can be achieved by sequence of addition 
operations only i.e. to perform subtraction, A-B, we can find 2's complement of B. 
This can be calculated using 1's complemented & then adding 1 to it. Thus, a common 
circuit can perform the addition and subtraction operation. A 4-bit adder- subtraction 
circuit is shown in figure 3.15, which is formed by using XOR gate with every full 
adder. The XOR gate with output 0 is for detecting overflow. 

condition 

Figure 3.15: 4-bit adder-subtractor circuit 

The control input 'x' controls the operations i.e. if x =O then the circuit behaves like 
an adder and if x =1 then circuit behaves like a subtractor. The operation is 
summarized as : 

a) When x = 0, c = 0, the output of all XOR gates will be the same as the 
corresponding input B, where i = 0 to 3. Thus, A, & B, are added through full 
adders giving Sum, S, & carry C ,  



b) When x = 1, the output of all XOR gates will be complement of input Bi where i Principles of Logic 
Circuits I 

=O to 3, to which carry Co=l is added. Thus, the circuit finds A plus 2's 
colnplement of B, that is equal to A-B. 

3.6.2 Decoders 
Decoder converts one type of coded information to another form. A decoder has 'n' 

inputs and an enable line (a sort of selection line) and 2" output lines. Let us see an 
example of 3 x 8 decoder which decodes a 3 bit information and there is only one 
output line which gets the value 1 or in other words,.out of Z3 = 8 lines only 1 output 
line is selected. Thus, depending on selected output line the information of the 3 bits 
can be recognized or decoded. 

(b) Logic Diagram I 

(c) Truth Table 

Figure 3.16 : 3 X  8 decoder 

Please make sure while constructing the logic diagram wherever tlie values in the truth 
table are appearing as zero in input and one in output the input should be fed in 
compiemented form e.g. the first 4 entries oftruth table contains 0 in lo positiorl and 
hence 10 value 0 is passed through a NOT gate and fed to AND. gates 'a', 'b', 'c '  and 
'd' which implies that these gates will be activated/selected only if lo is 0. If I. value is 
1 then none of the top 4 AND gates can be activated. Similar type of logic is valid for 
I , .  Please note the output line selected is named 000 or 0 10 or 1 1 1 etc. The output 
value of only one cjf the lines will be 1.  These 000, 01 0 indicates the label and, suggest 
that il' you have these lo I ,  I2 input values the labeled line will be selected for the 
output. The enable line is a good resource for combining two 3 x 8 decoders to make 
one 4 x 16 decoder. 
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3.6.3 Multiplexer 

Multiplexer is one of the basic building units of a computer system which in principle 
allows sharing of a common line by more than one input lines. It connects multiple 
input lines to a single output line. At a specific time one of the input lines is selected 
and the selected input is passed on to the output line. The diagram 4 x 1 multiplexer 
( MUX) is given in figure 3.16. 

1, 

(a) Block diagram (c) Truth table 

( c) Logic diagram 

Figure 3.17: 4 X 1 Multiplexer 

But how does the multiplexer know which line to select? This is controlled by the 
select lines. The select lines provide the communication among the various 
components of a computer. Now let us see how the multiplexer also known as MUX 
works, here for simplicity we will take the example of 4 x 1 MUX i.e. there are 4 input 
lines connected to 1 output line. For the sake of consistency we will call input line as 
I, and output line as 0 and control line a selection line S or enable as E. 

Please notice the way in which So and S, are connected in the circuit. To the 'a' AND 
gate So and S I  are inputted in complement form that means 'a' gate will output I. when 
both the selection lines have a value 0 which implies & = 1 and = 1, i.e. So= 0 
and SI=O and hence the first entry in the truth table. Please note that at So = 0 and SI  = 

0, AND gate 'b', 'c', 'd' will yield 0 output and when all these outputs will pass OR 
gate 'e' they will yield I. as the output for this case. That is for So=O and S1=O the 
output becomes I,,, which in other words can be said as " For So = 0 and S, = 0, 10 
input line is selected by MUX". Similarly other entries in the truth table are 
corresponding to the logical nature of the diagram. Therefore, by having two control 
lines we could have a 4 x 1 MUX. To have 8 x 1 MUX we must have 3 control lines or 
with 3 control lines we could make 23 = 8 i.e. 8 x 1 MUX. Similarly, with 'n' control 
lines we can have 

2"x 1 MUX. Another parameter which is predominant in MUX design is a number of 
inputs to AND gate. These inputs are determined by the voltage of the gate, which 
normally support a maximum of 8 inputs to a gate. 
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Where can these devices used in the computer? The multiplexe'rs are used in digital 
circuits for data and controlled signal routing. 

We have seen a concept where out of 'n' input lines, 1 can be selected, can we have a 
reverse concept i.e. if we have one input line and data is transmitted to one of the 
possible 2" lines where 'n' represents the number of selection lines. This operation is 
called Demultiplexing. 

3.6.4 Encoders 
An Encoder performs the reverse function of the decoder. An encoder has 2" input 
lines and 'n' output line. Let us see the 8 x 3 encoder which encodes 8 bit information 
and produces 3 outputs corresponding to binary numbers. This type of encoder is also 
called octal-to- binary encoder. The truth table of encoder is shown in figure 3.17. 

(a) Block diagram 

10 11 12 13 14 15 16 17 0 2  0 1  00 

0 0 0 0 0 Do 0 0 0 

0 D, 0 0 

0 0 0 

0 D3 0 

0' 0 0 

(b) Truth Table 

Figure 3.18: Encoder 

From the encoder table, it is evident that at any given time only one input is assumed 
to have 1 value. This is a major limitation of encoder. What will happen when two 
inputs are together active? The obvious answer is that since the output is not defined I 

the ambiguity exists. To avoid this ambiguity the encoder circuit has input priority so ~ 
that only one input is e~coded.  The input with high subscript can be given higher I 

priority. For example, if both D2 and D6 are 1 at the same time, then the output will be 
1 10 because D, has higher priority then D2. 

The encoder can be implimented with 3 OR gates whose inputs can be determined 
from the truth table. The output can be expressed as: 

00 = I l + I 3 + I 5 + I 7  
0, = 12 + + l6 + I7 
o2 = is + I~ + I~ + 17 

You can draw the K-Maps to determine above functions and draw the related 
combinational circuit 
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3.6.5 Programmable Logic Array 

Till now the individual gates are treated as basic building blocks froh which various 
logic functions can be derived. We have also learned about the stratergies of 
minimization of number of gates. But with the advancement of technology the 
integration provided by integrated circuit technology has increased resulting into 
production of one to ten gates on a single chip (in small scale integration). The gate 
level designs are constructed at the gate level only but if the design is to be done using 
these SSI chips the design consideration needs to be changed as a number of such SST 
chips may be used for developing a logic circuit. With MSI and VLSI we can put even 
more gates on a chip and can also make gate interconnections on a chip. This 
integeration and connection brings the advantages of decreased cost, size and 
increased speed. But the basic drawback faced in such VLSI & MSI chip is that for 
each logic function the layout of gate and interconnection needs to be designed. The 
cost involved in making such custom designed is quite high. Thus, came the concept 
of Programmable Logic Array, a general purpose chip which can be readily adopted 
for any specific purpose. 

The PLA are designed for SOP form of Boolean function and consist of regular 
arrangements of NOT, AND & OR gate on a chip. Each input to the chip is passed 
through a NOT gate, thus the input and its complement are available to each AND 
gate. The output of each AND gate is made available for each OR gate and the output 
of each OR gate is treated as chip output. By making appropriate connections any 
logic function can be implemented in these Programmable Logic Array. 

Figure 319: Programmable Logic Array 



The figure 3.1 8(a) shows a PLA of 3 inputs and 2 outputs. Please note tHe 
connectivity points, all these points can be connected if desired. Figure 3.18(b) shows 
an implementation of logic function: 

- -  - - - -  - -  
Oo = I@. I I .  12 + I  @. 1 I .  1 and 0,  = 1 @. I I. I + I @. I I through the PLA. 

3.6.6 Read-only-Memory (ROM) 
The read-only-memory is an example of a Programmable Logic Device (PLD) i.e the 
binary information that is stored within a PLD is specified in some fashion and 
embedded within the hardware. Thus the information remains even when the power 
goes. 

Output Data l~nes 

(a) Block Diagram 
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I 

i 
I 

b) Logic Diagram of 64-hit ROM 

Figure 3.20: ROM Design 

Figure 3.15 shows the block diagram of ROM. It consists of 'k' input address !ines I 
l 

and 'n'  output data lines. An m x n ROM is an array of binary cell organised into m I 

(2" - m) words of 'n' bits each. The ROM does not have any data input because the I 
i 

write operation is not defined for ROM. ROM is classified as a combinational circuit 
and constructed internally with decoder and a set of OR gates. 

1 
In general, a m x n ROM (where m=. 2" k no. of address lines) will have an internal I I 
k :K 2"ecoder and 'n' OR gate. Each OR gates has 2k inputs which are connected to 
t:ach ofthe outputs orthe decoder. 
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Check Your Progress 3 

1 ) Draw a Karnaugh Map for 5 variables. 
- .  

........................................................................................ 

........................................................................................ 

......................................................................................... 

2) Map the function having 4 variables in a K- Map and draw the truth table. The 
funcion is 
F (A ,B ,C ,D)=  (2,6,10,14). 

............................................................................................ 

............................................................................................ 

............................................................................................ 

3) Find the optimal logic expression for the above function. Draw the resultant 
logic diagram. 

............................................................................................ 

........................................................................................... 

........................................................................................... 
4) What are the advantages of PLA? 

........................................................................................... 

........................................................................................... 

........................................................................................... 

5) Can a full adder be constructed using 2 half adders? 

.......................................................................................... 

.......................................................................................... 

3.7 SUMMARY 

This unit provides you the information regarding a basis of a computer system. The 
key elements for the design of a combinational circuit like adders etc. are discussed in 
this unit. With the advent of PLA's the designing of circuit is changing and now the 
scenario is moving towards micro processors. With this developing scenario in the 
forefront and the expectation of Ultra- Large- Integration (ULSI) in view, time is not 
far of when design of logic circuits will be confined to single microchip components. 
You can refer to latest trends of design and development including VHDL (a hardware 
design language) in the further readings. 

3.8 SOLUTIONSIANSWERS 

Check Your Progress 1 

1 .  Lc;gic gates produce typical outputs based on inpiit valucs NAND and NC)K a1.c 
universal gates as they can be used to constant any other logic gate. 
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One adjacency of  4 variables, So 
F=c .D  

PLA's are generic chips that can be used to implement a number of  SOP logic 
function 
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