
UNIT 2 DATA REPRESENTATION 

Structure Page Nos. 
I 

2.0 Introduction 1 
2.1 Objectives 
2.2 Data Representation 
2.3 Number Systems: A Look Back 
2.4 Decimal Representation in Computers 
2.5 Alphanumeric Representation 
2.6 Data Representation For Computation 

2.6.1 Fixed Point Representation 
2.6.2 Decimal Fixed Point Representation I 

2.6.3 Floating Point Representation 
2.6.4 Error Detection And Correction Codes 

2.7 Summary 
2.8 Solutions/ Answers 

2.0 INTRODUCTION 

In the previous Unit, you have been introduced to the basic configuration of the 
I 

Computer system, its components and working. The concept of instructions and their ~ 
execution was also explained. In this Unit, we will describe various types of binary I 

notations that are used in contemporary computers for storage and processing of data. 
As far as instructions and their execution is concerned it will be discussed in detailed 
in the later blocks. 

The Computer System is based on the binary system; therefore, we will be devoting 
this complete unit to the concepts of binary Data Representation in the Computer 
System. This unit will re-introduce you to the number system concepts. The number 

I 

I 
systems defined in this Unit include the Binary, Octal, and Hexadecimal notations. In 
addition, details of various number representations such as floating-point i 
representation, BCD representation and character-based representations have been 
described in this Unit. Finally the Error detection and correction codes have been 
described in the Unit. 

2.1 OBJECTIVES I 
I 

At the end of the unit you will be able to: I 

Use binary, octal and hexadecimal numbers; 
I 

Convert decimal numbers to other systems and vice versa; ~ 
Describe the character representation in computers; ! 
Create fixed and floating point number formats; I 

Demonstrate use of fixed and floating point numbers in performing arithmetic 
operations; and 
Describe the data error checking mechanism and error detection and correction 

I 

codes. ~ 
2.2 DATA REPRESENTATION I 

The basic nature of a Computer is as an information transformer. Thus. a computer 

I 
must be able to take input, process it and produce output. The key que~tiori.~ herc . > I <  

. ? l ~  
I 
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How is the Information represented in a computer? 

Well, it is in the form of Binary Digit popularly called Bit. 

How is the input and output presented in a form that is understood by us? 

One of the minimum requirements in this case may be to have a representation for 
characters. Thus, a mechanism that fulfils such requirement is needed. In Computers 
information is represented in digital form, therefore, to represent characters in 
computer we need codes. Some common character codes are ASCII, EBCDIC, ISCII 
etc. These character codes are discussed in the subsequent sections. 

How are the arithmetic calculations performed through these bits? 

We need to represent numbers in binary and should be able to perform operations on 
these numbers. 

Let us try to answer these questions, in the following sections. Let us first recapitulate 
some of the age-old concepts of the number system. 

2.3 NUMBER SYSTEMS: A LOOK BACK 

Number system is used to represent information in quantitative form. Some of the 
common number systems are binary, octal, decimal and hexadecimal. 

A number system of base (also called radix) r is a system, which has r distinct 
symbols for r digits. A string of these symbolic digits represents a number. To 
determine the value that a number represents, we multiply the number by its place 
value that is an integer power of r depending on the place it is located and then find 
the sum of veighted digits. 

Decimal Numbers: Decimal number system has ten digits represented by 
0,1,2,3,4.5,6,7,8 and 9. Any decimal number can be represented as a string of these 
digits and since there are ten decimal digits, therefore, the base or radix of this system 
is 10. 

Thus, a string of number 234.5 can be represented as: 

2 x  l o 2 + j x  ] o 1 + 4 x  1 o o + 5 x  lo-' 

Binary Numbers: In binary numbers we have two digits 0 and 1 and they can also be 
represented, as a string of these two-digits called bits. The base of binary number 
system is 2. 

For example, 10 10 10 is a valid binary number. 

DecimaI equrvalent of u binary number. 

For converting the value of binary numbers to decimal equivalent we have to find its 
value, which is found by multiplying a digit by its place value. For example, binary 
number 10 10 1 0 is equivalent to: 

1 ~ 2 ~ + 0 ~ 2 ~ + 1 ~ 2 ~ +  0 ~ 2 ~ + 1  X ~ ~ + O X ~ ~  
= 1x32-tOx16+ l y 8 + 0 x 4 +  1 ~ 2 + O x l  
= 3 2 + 8 + 2  
= 42 in decimal. 

Octal Numbers: An octal system has eight digits represented as 0,1,2,3,4,5,6,7. For 
finding equivalent decimal number of an octal number one has to find the quantity of 
the octal number which is again calculated as: 
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Integer Part = 43 Fraction 0.125 

On multiplying the fraction repeatedly 
On dividing the quotient of integer Pa* and sepaating the integer as get it repeatedly by 2 and separating the till you have all zeros in fraction 
remainder till we get 0 as the quotient 

Integer Part Quotient on division by 2 Remainder on division by 2 

43 2 1 1 
2 1 10 1 
10 95 0 
0 5 02 1 
02 0 1 0 
0 1 00 1 

Data Representation Octal number (23.4)8 . 

(Please note the subscript 8 indicates it is an octal number, similarly, a subscript 2 will 
indicate binary, 10 will indicate decimal and H will indicate Hexadecimal number, in 
case no subscript is specified then number should be treated as decimal number or else 
whatever number system is specified before it.) 

Decimal equivalent of Octal Number: 

Hexadecimal Numbers: The hexadecimal system has 16 digits, which are represented 
I as 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F. A number (F2)H is equivalent to 

= (1 5 x 16) + 2 11 (As F is equivalent t'o 15 for decimal) 
I 
I 

I 

Conversion of Decimal Number to Binary Number: For converting a decimal 
number to binary number, the integer and fractional part are handled separately. Let us 
explain it with the help of an example: I 

Example I: Convert the decimal number 43.125 to binary number. 

I 
I 

I 
I 

Please note in the figure above that: I 
The equivalent binary to the lnteger part of the number is (10101 l), I 

You will get the Integer part of the number, if you READ the remainder in the 
direction of the Arrow. 

33 
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Please note in the figure above that: 

The equivalent binary to the Fractional part of the number is 001. 

You will get the fractional part of the number, if you READ the Integer part of 
the number in the direction of the Arrow. 

Thus, the number (10101 1.001), is equivalent to (43.125),, . 

You can cross check it as follows: 

= 3 2 + 0 + 8 + 0 + 2 +  1 + 0 + 0 + 1 / 8  

One easy direct method in Decimal to binary conversion for integer part is to first 
write the place values as: 

z6 25 24 23 z2 21 20 

64 32 16 8 4 2 1 

Step 1 : Take the integer part e.g. 43, find the next lower or equal binary place value 
number, in this example it is 32. Place 1 at 32. 

Step 2: Subtract the place value from the number, in this case subtract 32 from 43, 
~ h i c h  is 11. 

Step 3:  Repeat the two steps above till you get 0 at step 2. 
Step 4: On getting a 0 put 0 at all other place values. 

These steps are shown as: 

You can extend this logic to fractional part also but in reverse order. Try this method 
with several numbers. It is fast and you will soon be accustomed to it and can do the 
whole operation in single iteration. 

Conversion of Binary to Octal and Hexadecimal: The rules for these conversions 
are straightforward. For converting binary to octal, the binary number is divided into 

3 4 



Hexadecimal Octal Number Binary coded Octal Binary-coded 
Number Hexadecial 

0 000 0 0000 

1 00 1 1 000 1 

2 010 2 0010 

3 01 1 3 0011 4 

4 100 4 0100 

5 101 5 0101 

6 110 6 01 10 

7 111 7 0111 

8 1000 

9 100 1 
-Decimal- 

A 10 1010 

B 11 101 1 

C 12 1100 

D 13 1101 

E 14 11 10 

F i 5 1111 

I 
I 

groups of three, which are then combined by place value to generate equivalent octal. 
For example the binary number 1 10 10 1 1 .OO 10 1 can be converted to Octal as: 

I 

I 
I 

(Please note the number is unchanged even though we have added 0 to complete the I 

grouping. Also note the style of grouping before and after decimal. We count three 
numbers from right to left while after the decimal from left to right.) 

Thus, the octal number equivalent to the binary number 1 10 10 1 1 .OO 10 1 is (1 53.1 2).+ 

Similarly by grouping four binary digits and finding equivalent hexadecimal digits for 
it can make the hexadecimal conversion. For example the same number will be 
equivalent to (6B.28)". 

110 1011 . 0010 1 
I 

0110 1011 . 0010 1000 I 

8 (1 1 in hexadecimal is B) 
Thus equivalent hexadecimal number is (6B.28)" 

Conversely, we can conclude that a hexadecimal digit can be broken down into a 
string of binary having 4 places and an octal can be broken down into string of binary 
having 3 place values. Figure 1 gives the binary equivalents of octal and hexadecimal 
numbers. I ~ ~ ~ 

I 

~ 
I 

I 
I 

I 

Figure 1: Binary cquivrlcnt of octal and hexadecimal digits 
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Check Your Progress 1 

1) Convert the following binary numbers to decimal. 

i) 1100.1101 

ii) 10101010 

..................................................................................................................................... 

..................................................................................................................................... 

..................................................................................................................................... 

..................................................................................................................................... 

2) Convert the following decimal numbers to binary. 

i) 23 

ii) 49.25 

iii) 892 

..................................................................................................................................... 

..................................................................................................................................... 

..................................................................................................................................... 

..................................................................................................................................... 

3) Convert the numbers given in question 2 to hexadecimal ftom decimal or ftom 
the binary. 

..................................................................................................................................... 

..................................................................................................................................... 

..................................................................................................................................... 

..................................................................................................................................... 

2.4 DECIMAL REPRESENTATION IN 
COMPUTERS 

The binary number system is most natural for computer because of the two stable 
states of its components. But, unfortunately, this is not a very natural system for us as 
we work with decimal number system. So, how does the computer perform the 
arithmetic? One solution that is followed in most of the computers is to convert all 
input values to binary. Then the computer performs arithmetic operations and finally 
converts the results back to the decimal number so that we can interpret it easily. Is 
there any alternative to this scheme? Yes, there exists an alternative way of 
performing computation in decimal form but it requires that the decimal numbers 
should be coded suitably before performing these computations. Normally, the 
decimal digits are coded in 7-8 bits as alphanumeric characters but for the purpose of 
arithmetic calculations the decimal digits are treated as four bit binary code. 
As we know 2 binary bits can represent 22 = 4 different combinations, 3 bits can 
represent 23 = 8 combinations, and similarly, 4 bits can represent 24 = 16 
combinations. To represent decimal digits into binary form we require 10 
combinations, but we need to have a 4-digit code. One such simple representation may 
be to use first ten binary combinations to represent the ten decimal digits. These are 
popularly known as Binary Coded Decimals (BCD). Figure 2 shows the binary coded 
decimal numbers. 

. . 
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to represent 128 characters, which include 32 non-printing control characters, 
alphabets in lower and upper case, decimal digits, and other printable characters that 
are available on your keyboard. Later as there was need for additional characters to be 
represented such as graphics characters, additional special characters etc., ASCII was 
extended to 8 bits to represent 256 characters (called Extended ASCII codes). There 
are many variants of ASCII, they follow different code pages for language encoding, 
however, having the same format. You can refer to the complete set of ASCII 
characters on the web. The extended ASCII codes are the codes used in most of the 
Microcomputers. 

The major strength of ASCII is that it is quite elegant in the way it represents 
characters. It is easy to write a code to manipulate upper/lowercase ASCII characters 
and check for valid data ranges because of the way of representation of characters. 
In the original ASCII the gth bit (the most significant bit) was used for the purpose of 
error checking as a check bit. We will discuss more about the check bits later in the 
Unit. 

EBCDIC 

Extended Binary Coded Decimal Interchange Code (EBCDIC) is a character-encoding 
format used by IBM mainframes. It is an 8-bit code and is NOT Compatible to ASCII. 
It had been designed primarily for ease of use of punched cards. This was primarily 
used on IBM mainframes and midrange systems such as the AS/400. Another strength 
of EBCDIC was the availability of wider range of control characters for ASCII. The 
character coding in this set is based on binary coded decimal, that is, the contiguous 
characters in the alphanumeric range are represented in blocks of 10 starting from 
0000 binary to 1001 binary. Other characters fill in the rest of the range. There are 
four main blocks in the EBCDIC code: 

0000 0000 to 001 1 1 1 1 1 Used for control characters 

0 100 0000 to 0 1 1 1 1 1 1 1 Punctuation characters 

1000 0000 to 101 1 1 1 1 1 Lowercase characters 

1 100 0000 to 1 1 1 1 1 1 1 1 Uppercase characters and numbers. 

There are several different variants of EBCDIC. Most of these differ in the 
punctuation coding. More details on EBCDIC codes can be obtained from further 
reading and web pages on EBCDIC. 

Comparison of ASCII and EBCDIC 

EBCDIC is an easier to use code on punched cards because of BCD compatibility. 
However, ASCII has some of the major advantages on EBCDIC. These are: 
While writing a code, since EDCDIC is not contiguous on alphabets, data comparison 
to continuous character blocks is not easy. For example, if you want to check whether 
a character is an uppercase alphabet, you need to test it in range A to Z for ASCII as 
they are contiguous, whereas, since they are not contiguous range in EDCDIC these 
may have to be compared in the ranges A to I, J to R, and S to Z which are the 
contiguous blocks in EDCDIC. 

Some of the characters such as [I \{}/'-I are missing in EBCDIC. In addition, missing 
control characters may cause some incompatibility problems. 

UNICODE 

This is a newer International standard for character representation. Unicode provides 
a unique code for every character, irrespective of the platform, Program and 
Language. Unicode Standard has been adopted by the Industry. The key players that 
have adopted Unicode include Apple, HP, IBM, Microsoft, Oracle, SAP, Sun, Sybase, 
Unisys and many other companies. Unicode has been implemented in most of the 
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latest client server software. Unicode is required by modern standards such as XML, Data Re,presentation 

Java, JavaScript, C O M A  3.0, etc. It is supported in many operating systems, and 
almost all modem web browsers. Unicode includes character set of Dev Nagari. The 
emergence of the Unicode Standard, and the availability of tools supporting it, is 

I 

among the most significant recent global software technology trends. I 

One of the major advantages of Unicode in the client-server or multi-tiered 
applications and websites is the cost saving over the use of legacy character sets that 
results in targeting website and software products across multiple platforms, 
languqes and countries without re-engineering. Thus, it helps in data transfer through 
many different systems without any compatibility problems. In India the suitability of 
Unicode to implement Indian languages is still being worked out. 

Indian Standard Code for information interchange (ISCII) I 

i 
The ISCII is an eight-bit code that contains the standard ASCII values till 127 from 
128-225 it contains the characters required in the ten Brahmi-based Indian scripts. It 
is defined in IS 13194:1991 BIS standard. It supports INSCRIPT keyboard which 
pr~vides a lagical arrangement of vowels and consonants based on the phonetic 
properties and usage frequencies of the letters of Bramhi-scripts. Thus, allowing use 
of existing English keyboard for lndian language input. Any software that uses ISCII 
codes can be used in any Indian Script, enhancing its commercial viability. It also 
allows transliteration between different Indian scripts through change of display 
made. 

2.6 DATA REPRESENTATION FOR 
COMPUTATION 

As ~liscussed earlier, binary codes exist for any basic representation. Binary codes can 
be formulated for any set of discrete elements e.g. colours, the spectrum, the musical 
notes, chessboard positions etc. In addition these binary codes are also used to 
formulate instructions, which are advanced form of data representation. We will 
discuss about instructions in more detail in the later blocks. But the basic question 
which remains to be answered is: 

Mow are these codes actually used to represent data for scientific calculations? 
r 

The computer is a discrete digital device and stores information in flip-flops (see Unit 
3 . 4  of this Block for more details), which are two state devices, in binary form. Basic 
requirements of the computational data representation in binary form are: 

* 
I Representation of sign 

0 Representation of Magnitude 
o If the number i s  fractional then binary or decimal point, and 
* Exponent 

The solution to sign representation is easy, because sign can be either positive or 
negative, therefore, one bit can be used to represent sign. By default it should be the 
left most bit (in most of the machines it is the Most Significant Bit). 

Thus, a number of n bits can be represented as n+l bit number, wheic n+1th bit is the 
sign bit and rest n bits represent its magnitude (Please refer to Figure 3). 

_-j( 1 bi t  + n bit 
sign 

__3 
magnitude 

Figure 3: A (n  + 1) bit number 



Introduction to Digital The decimal position can be represented by a position between the flip-flops (storage 
Circuits cells in computer). But, how can one determine this decimal position? Well to 

simplify the representation aspect two methods weresuggested: (1) Fixed point 
representation where the binary decimal position is assumed either at the beginning or 
at the end of a number; and (2) Floating point representation where a second register 
is used to keep the value of exponent that determines the position of the binary or 
decimal point in the number. 

But before discussing these two representations let us first discuss the term 
"complement" of a number. These complements may be used to represent negative 
numbers in digital computers. 

Complement: There are two types of complements for a number of base (also called 
radix) r. These are called r's complement and (r- 1)'s complement. For example, for 
decimal numbers the base is 10, therefore, complements will be 10's complement and 
(10-1) = 9's complement. For binary numbers we talk about 2's and 1's complements. 
But how to obtain complements and what do these complements means? Let us 
discuss these issues with the help of following example: 

Example 2: Find the 9's complement and 10's complement for the decimal number 
256. 

Solution: 

9's complement: The 9's complement is obtained by subtracting each digit of the 
number from 9 (the highest digit value). Let us assume that we want to represent a 
maximum of four decimal digit number range. 9's complement can be used for BCD 
numbers. 

Similarly, for obtaining 1's complement for a binary number we have to subtract each 
binary digit of the number from the digit 1. 

10's complement: Adding 1 in the 9's complement produces the 10's complement. 
10's complement of 0256 = 9743+1 = 9744 

Please note on adding the number and its 9's complement we get 9999 (the maximum 
possible number that can be represented in the four decimal digit number range) while 
on adding the number and its 10's complement we get 10000 (The numberjust higher 
than the range. This number cannot be represented in four digit representation.) 
Example3: Find 1's and 2's complement of 1010 using only four-digit representation. 

Solution: 

1's complement: The 1's complement of 101 0 is 



Please note that wherever you have a digit 1 in number the con~plement contains 0 for 
that digit and vice versa. In other words to obtain I 's co~rlplement of a binary number, 
we only have to change all the 1's of the number to 0 and all the zeros to 1's. This can 
be done by complementing each bit of the binary number. 

2's complement: Adding 1 in 1's complement will generate the 2's complement 

1 0 1 0  

The 1's complement is 

Please note that 1+1 = 1 0 in binary 

--------- 

The 2's complement can also be obtained by not cornplementing the least significant 
zeros till the first 1 is encountered. This 1 is also not complemented. ARer this 1 the 
rest of all the bits are complemented on the left. 

Therefore, 2's complement of the follosving number (using this method) should be 
(you can check it by finding 2's co~nplernznt as wc l;avc d o ~ ~ e  in the example). 

I 

No chdngi: In these bits 

The 2's complement 

No change in number and its 2's Complement, a special case 

No change in this 

2.6.1 Fixed Point Representation 

The fixed-point numbers in birrdry uses a sign bit. A positive number has a sign bit 0, 
while the negative number has a sign bit 1 .  I n  the fixed-point numbers we assume that 
the position of the binary point is at the end, that is, after the least significant bit. It 
implies that all the represented numbers will be integers. A negative number can be 
represented in one of the following ways: 

e Signed magnitude representation 
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Decimal Representation (8 bits) 
Number Sign Bit Magnitude1 1's complement 

for negative number (7 bits) 

+6 0 000 0110 

-6 1 111 1001 

For negative number take 1's complement of all the bits (including sign 
bit) of the positive number 

* Signed I 's corriplement representation, or 
* Signcd 2's complement representation. 
(Assumption: size of register = 8 bits including the sign bit) 

Signed Magnitude Representation 
-- -- 
~Lcimal - Representation (8 bits) 
Number 

+6 0 000 0110 

-6 1 000 0110 

. No change in the Magnitude, only sign bit changes 

Signed 1's Complement Representation 

Signed 2's Complement Representation 

Decimal Representation (8 bits) 
Number Sign Bit Magnitude1 1's complement 

for negative number (7 bits) 
+6 0 000 0110 

-6 1 111 1010 

For negative number take 2's complement of all the bits (including sign 
bit) of the positive number 

Arithmetic addition 

The complexity of arithmetic addition is dependent on the representation, which has 
been followed. Let us discuss this with the help of fotlowing example. 

Example 4: Add 25 and -30 in binary using 8 bit registers, using: 

Signed magnitude representation 
Signed I 's complement 
Signed 2's complement 

Solution: 

42 

Signed Magnitude Representation 
Number, 

Sign Bit Magnitude 
+25 * 0 001 1001 
-25 1 001 1001 
+3 0 0 001 1110 
-3 0 1 001 1110 



Data Rel~resentnlion To do the arithmetic addition with one negative number only, we have to check the 
magnitude of the numbers. The number having smaller magnitude is then subtracted 
from the bigger number and the sign of bigger number is selected. The 
implementation of such a scheme in digital hardware  ill require a long sequence of 
control decisions as well as circuits that will add, compare and subtract numbers. Is 
there a better alternative than this scheme? Let us first try the signed 2's complement. 

Signed Magnitude Representation 

001 1001 

110 0111 

- - 001 I l l 0  

110 0010 

Now let us perform addition using signed 2's complement notation: 

100 1 Perform s~mple b~nary 

1 19 001 0 add~ t~on  No carry ~n to 
the slgn b ~ t  and no carry 
out of the slgn b ~ t  I 

I 
I 

I'os~t~\e 2's co~nplement of above 
value of +05 0 1 000 0101 result 

Pos~ t~ve  and . --------- - the slgn blt and cany out 

600 0101 of the s ~ g n  b ~ t  

I 
Add~tron of Perform s~mple brnary I 

I '' O1 
add~t~on There IS cany m 

O O I F  to the slgn b ~ t  and cany 
out of the slgn b ~ t  No 

110 1001 overflow 

2's complemnt of above 
011 0111 result 

Please note how easy it is to add two numbers using signed 2's Complement. This 
procedure requires only one control decision and only one circuit for adding the two 
numbers. But it puts on additional condition that the negative numbers should be 
stored in signed 2's complement notation in the registers. This can be achieved by 



Introduction to Digital cotnplernenting the positive number bit by bit and then incrementing the resultant by 1 
Circuits to get signed 2's complement. 

Signed 1's complement representation 

Another possibility, which also is simple, is use of signed 1's complement. Signed 1 's 
complement has a rule. Add the two numbers, including the sign bit. If carry of the 
most significant bit or sign bit is one, then increment the result by 1 and discard the 
carry over. Let us repeat all the operations with 1's complement. 

Operation Decimal Signed 1's complement representation Comments 
equivalent 
number 

Carry Sign out .Magnitude 
out 

1001 Simple binary addition. 
There is no carry out of 

+55 0 0 00 1 01 11 
Addition of 

001 1001 Perform simple binary 

Positive and 110 0001 addition. No czr~y in to 
larger the sign bit and no carry 

negative -05 0 1 11 1 1011 out of the sign bit 
Number 

1's complement of above 
000 0101 result 

result 

Addition of 1 10 01 1 1 There is carry in to the 

1 sign bit and carry out of 
the sign bit. The carry out 

smaller 1 0 000 0 10 1 is added it to the Sum bit 
and then discard no 

Number Add carry 

and 
discard it 

i Perform simple binary 
addition. There is carry in 

001° to the sign bit and carry 
out of the sign bit No 

-55 1 1 100 0111 overflow 

Add carry 
to sum and 
discard it 
1 

100 1000 

1's complemnt of above 
011 0111 result 

result 

Another interesting feature about these representations is the representation of 0. In 
signed magnitude and 1's complement there'are two representations for zero as: 

. Representation + 0 -0 

signed magnitude 0 000 0000 1 000 0000 

Signed 1 's complement 0 000 0000 1 111 1111 
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But, in signed 2's complement there is just one zero and there is no positive or 

+O in 2's Complement Notation:O 000 0000 

-0 in 1's complement notation: 1 1 1 1 1 1 1 1 

Add 1 for 2's complement: 1 

Discard the Carry Out 1 0 000 0000 

Thus, -0 in 2's complement notation is same as +O and is equal to 0 000 0000. Thus, 
both +O and -0 are same in 2's complkment notation. This is an added advantage in 
favour of 2's complement notation. 

The highest number that can be accommodated in a register, also depends on the type 
of representation. In general in an 8 bit r2gister 1 bit is used as sign, therefore, the rest 
7 bits can be used for representing the value. The highest and the lowest numbers thzt 
can be represented are: 

=(128-1) to ' - (128- 1) 

= 127 to -127 

For signed I 's complement 127 to -127 

But, for signed 2's complement we can represent +I27 to -128. The - 128 is 
represented in signed 2's complement notation as 10000000. 

Arithmetic Subtraction: The subtraction can be easily done using the 2's 
complement by taking the 2's complement of the value that is to be subtracted 
(inclusive of sign bit) and then adding the two numbers. 

Signed 2's complement provides a very simple way for adding and subtracting two 
numbers. Thus, many 'computers (including IBM PC) adopt signed 2's complement 
notation. The reason why signed 2's complement is preferred over signed 1's 

What is the significance of overflow for binary numbers? 

Well, the overflow results in errors during binary arithmetic as the numbers are 
represented using a fixed number of digits also called the size of the number. Any 
value that results from computation must be less than the maximum of the allowed 
value as per the size of the number. In case, a result of computation exceeds the 

I 
maximum size, the computer will not be able to represent the number correctly, or in 
other words the number has overflowed. Every computer employs a limit for 
representing numbers e.g. in our examples we are using 8 bit registers for ~alculating 
the sum. But what will happen if the sum of the two numbers can be accommodated in 
9 bits? Where are we going to store the 9th bit, The problem will be better understood 

I 

The expected result is +I40 but the binary sum is a negative number and is equal to 
-1 16, which obviously i s  a wrong resuit. This has occurred because of overflow. ~ 

45 ~ 
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How does the computer know that overflow has occurred? 

If the carry into the sign bit is not equal to the carry out of the sign bit then 
overflow must have occurred. 

Another simple test of overflow is: if the sign of both the operands is same during 
addition, then overflow must have occurred if the sign of resultant is different than 
that of sign of any operand. 

For example 

bit Complement 

-65 1 011 1111 -65 1 011 1111 
-1 5 1 11 1 0001 -75 1 111 0001 

-80 1 1 01 1 0000 -140 1 0 111 0100 

car$ into Sign bit = 1 Carry into Sign bit = 0 
Carry out of sign bit = 1 Carry out of Sign bit = 1 
Therefore, NO OVERFLOW Therefore, OVERFLOW 

Thus, overflow has occurred, i.e. the arithmetic results so calculated have exceeded 
the capacity of the representation. This overflow also implies that the calculated 
results will be erroneous. 

2.6.2 Decimal Fixed Point Representation 

The purpose of this representation is to keep the number in decimal equivalent form 
and not binary as above. A decimal digit is represented as a combination of four bits; 
thus, a four digit decimal number will require 16 bits for decimal digits representation 
and additional 1 bit for sign. Normally to keep the convention of one decimal digit to 
4 bits, the sign sometimes is also assigned a 4-bit code. This code can be the bit 
combination which has not been used to represent decimal digit e.g. 1 100 may 
represent plus and 1 10 1 can represent minus. 

For example, a simple decimal number - 21 56 can be represented as: 

1101 0010 0001 0101 0110 u 
Sign 

Although this scheme wastes considerable amount of storage space yet it does not 
require conversion of a decimal number to binary. Thus, it can be used at places where 
the amount of computer arithmetic is less than that of the amount of inputloutput of 
data e.g. calculators or business data processing situations. The arithmetic in decimal 
can also be performed as in binary except that instead of signed complement, signed 
nine's complement is used and instead of signed 2's complement signed 9's 
complement is used. M o ~ e  details or! decimal arithmetic are available in further 
readings. 

Check Your Progress 2 

1) Write the BCD equivale:': l i e  l : - r 7 ~  fiuxbers givrv :.J: 

i) 23 

ii) 49.25 

iii) 892 



2) Find the I 's and 2's complement of the following fixed-point numbers. 

i) lOlOOOl0 
! 

ii) 00000000 

iii) 11001 100 

..................................................................................................................................... 

..................................................................................................................................... 

..................................................................................................................................... 

..................................................................................................... 

i) +50 and- 5 

ii) +45 and -65 

iii) +75 and +85 

Also indicate the overflow if any. 

..................................................................................................................................... 

............................................................................................................................... 

.................................................................................................................................... 

2.6.3 Floating Point Representation 

Floating-point number representation consists of two parts. The first part of the I 
number is a signed fixed-point number, which is termed as mantissa, and the second 
part specifies the decimal or binary point position and is termed as an Exponent. The 
mantissa can be an integer or a fraction. Please note that the position of decimal or 
binary point is assumed and it is not a physical point, therefore, wherever we are 
representing a point it is only the assumed position. 

Example 1: A decimal + 12.34 in a typical floating point notation can be represented 
in any of the following two forms: 

Sign Sign 

Mantissa (Illtcpcr) ll'xponcni 



Introduction to Digital This number in any of the above forms (if represented in BCD) requires 17 bits for Circuits mantissa (I for sign and 4 each decimal digit as BCD) and 9 bits for exponent (I for 
sign and 4 for each decimal digit as RCD). Please note that the exponent indicates the 
correct decimal location. In the first case where exponent is +2, indicates that actual 
position of the decimal point is two places to the right of the assumed position, while 
exponent- 2 indicates that the assumed position of the point is two places towards the 
left of assumed position. The assumption of the position of point is normally the s&me 
in a computer resulting in a consistent computational environment. 

Floating-point numbers are often represented in normalised forms. A floating point 
number whose mantissa does not contain zero as the most signiticant digit of the 
number is considered to be in normalised form. For example, a BCD mantissa + 370 
which is 0 001 1 01 11 00P0 is in normalised form because these leading zero's are not 
part of a zero digit. On the other hand a binary number 0 01 100 is not in a nonnalised 
form. The normalised form of this number is: 

- 
0 1100 0100 

Sign Normalised Mantissa Exponent (assuming fractional Mantissa 

A floating binary nu~nber L1O1O.OO1 in a 16-bit register can be represented in 
normalised form (assuming 10 bits for mantissa and 6 bits for exponent). 

Sign bit + 
0 I 101000100 I 

Mant~ssa (Integer) Exponent 

A zero cannot be normalised as all the digits in mantissa in this case have to be zero. 

Arithmetic operations involved with floating point numbers are more complex in 
nature, take longer time for execution and require complex hardware. Yet the floating- 
point representation is a must as it is useful in scientific calculations. Real numbers 
are normally represented as floating point numbers. 

The following figure shows a format of a 32-bit floating-point number. 

0 1 8 9 

I q I a s e d  Exponent = 8 bits 1 Significand = 23 bits 
-- 

Figure 4: Floating Point Number Representation 

The characteristics of a typical floating-point representation of 32 bits in the above 
figure are: 

r Left-most bit is the sign bit of the number; 
r Mantissa or signific and should be in,normalised form; 

The base of the number is 2, and 
r A value of 128 is added to the exponent. (Why?) This is called a bias. 

A normal e~ponent of 8 bits normally can represent exponent values as 0 to 255. 
However, a we are adding 128 for getting the biased exponent from the actual 
exponent, the actual exponent valuer. represented in the range will be - 128 to 127. 

Now, let us define the range that a normalised mantissa can represent. Let us assume 
that our pre;ent representations has thc normalised mantissa, thus, the left most bit 

48 



cannot be zero, therefore, it has to be 1. Thus, it is not necessary to store this firs1 bit 
and it is being assumed implicitly for the number. Therefore, a %bit mantissa car1 
represent 23 + 1 = 24 bit mantissa in our representation. 

The implicit first bit as 1 followed by 23 zero's, that is, 

0.l00000000000000000000000 

Decimal equivalent = 1 x 2-' = 0.5 

The Maximum value of the mantissa: 
The implicit first bit 1 followed by 23 one's, that is, 

0.1111 1111 1111 1111 1111 1111 

Decimal equivalent: 
For finding binary equivalent let us add Zz4 to above mantissa as follows: 

Binary:0.1111 1111 1111 1111 1111 1111 

+0.0000 0000 0000 0000 0000 000 1 = 2-" 

1.000000000000000000000000 = 1 

Therefore, in normalised mantissa and biased exponent form, the floating-point 
number format as per the above figure, can represent binary floating-point numbers in 

Smallest Negative number 
Maximum mantissa and maximum exponent I 

= - (1 -2-24) 2127 

Largest negative number 
Minimum mantissa and Minimum exponent 

= -0.5 x 2-"8 

Smallest positive number 
= 0.5 x 2-'28 

Largest positive number 
= (1 -2-24) x 212' I I 

~ 

I 
I 

I 

-0.5 x 2 l ?h  f0.5 x 2-!28 

%tro 

Figure 5: Binary floating-point numhcr range for given 32 bit format 
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In floating point numbers, the basic trade-off is between the range of the numbers and 
accuracy, also called the precision of numbers. If we increase the exponent bits in 32- 
bit format, the range can be increased, however, the accuracj of numbers will go 
down, as size of mantissa will become smaller. Let us take an example, which will 
clarify the term precision. Suppose we have one bit binary mantissa then we can 
represent only 0.1 0 and 0.1 1 in the normalised form as given in above example 
(having an implicit 1 ). The values such as 0.10 1, 0.10 1 1 and so on cannot be 
represented as complete numbers. Either they have to be approximated or truncated 
and will be represented as either 0.10 or 0.1 1. Thus, it will create a truncation or round 
off error. The higher the number of bits in mantissa better will be the precision. 

In floating point numbers, for increasing both precision and range more number of 
bits are needed. This can be achieved by using double precision numbers. A double 
precision format is normally of 64 bits. 

Institute of Electrical and Electronics Engineers (IEEE) is a society, which has created 
lot of standards regarding various aspects of computer, has created IEEE standard 754 
for floating-point representation and arithmetic. The basic objective of developing this 
standard was to facilitate the portability of programs from one to another computer. 

, 
This standard has resulted in development of standard numerical capabilities in 
various microprocessors. This representation is shown in figure 6. 

--- 
Single Precision = 32 bits 

Significand (N) 

-- 

Double Precision = 6-1 bih 

Figure 6: IEEE Standard 754 format 

Figure 7 gives the floating-point numbers specified by the IEEE Standard 754. 

Single Precision Numbers (32 bits; 

Exponent (E) Signlficand (N) Value /Comments 

Not equal to 0 Do represent a number 

For example, if S is zero that is positive 



I_ t - - - -  

l;igu~-c 7: Valucs of floating point nunlbers as per 1EEE standard 754 

Please note that TEEE standard 754 specifies plus zero and ininus zero and plus 
infinity and minus infinity. Floating point arithmetic is more sticky than fixed point 
arithmetic. For floating point addition and subtraction we have to follow the following 

Check whether a typical operand is zero ,I 
Align the significand such that both the significands have same exponent 
Add or subtract the significand only and finally 1 
The significand is ~iormalised again 

These operations can be represented as 

x + y = (N, x 2Ex-Ey + N ~ ) X  2Ey 

Here, the assumption is that exponent of x (Ex) is greater than exponent of y (Ey), Nx 
and Ny represent significand of x and y respectively. 

While for multiplication and division operations the significand need to be multiplied 
or divided respectively, however, the exponents are to be added or to be subtracted 
respectively. In case we are using bias of 128 or any other bias for exponents then on 
addition of exponents since both the exponents have bias, the bias gets ,doubled. 
Therefore, we must subtract the bias from the exponent on addition of exponents. 
However, bias is to be added if we are subtracting the exponents. The division and 

I I 

multiplication operation can be represented as: i i 

x i  y = (N, i Ny) x 2Ex-Ey 

For more details on floating point arithmetic you can refer to the further readings. 

2.6.4 Error Detection and Correction Codes 

Before we wind, up the data representation in the context of today's computers one 
must discuss about the code, which helps in recognition and correction of efrors. 
Computer is an electronic media; therefore, there is a possibility of errors during data 
transmission. Such errors may result from disturbances in transmission media or 
external environment. But what is an error in binary bit? An error bit changes from 
0 to 1 or 1 to 0. One of the simplest error detection codes is called parity bit. 

Parity bit: A parity bit is an error detection bit added to binary data such that it makes 
the total number of 1's in the data either odd or even. For example, in a seven bit data 
0 1 101 0 1 an 8th bit, which is a parity bit may be added. If the added parity bit is even 

, 

parity bit then the value of this parity bit should be zero, as already four 1's exists in 
the 7-bit number. If we are adding an odd parity bit then it will be I, since we already 
have four 1 bits in the number and on adding 8th bit (which is ? parity bit) as 1 we are 
making total number of 1's in the number (which now includes parity bit also) as 5, an 
odd number. 
Similarly in data 0010 10 I Parity bit for  even parity is 1 

Parity bit for odd parity is 0 

But how does the parity bit detect an error? We will discuss this issue in general as an I 

error detection and correction system (Refer figure 8). 
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Hl.it how does the parity bit detect an error? We will discuss this issue in general as an 
error detection and correction systetr~ (Refer figure 8). 

'The error detection mechanism can be defined as follows: 

Sdurce -- Dcstinalion 

llcapply crror iicl.:cli,'n 01 

corrcclion COLIC pcncra!ix\n 
function <in d;!la ~ c c c ~ v s ~ l  

Con!parr: thc luo code\ 

Figure 8: Errol. detection and correction 

The Obiective : Data should be transmitted between a source data pair reliably, 
indicating error, or even correcting it, if possible. 

The Process: 

* An error detection function is applied on the data available at the source end an 
error detection code is generated. 

* 'The data and error detection or correction code are stored together at source. 
e On receiving the data transmission request, the stored data along with stored 

error detection or correction code are trar~smitted to the unit rqquesting data 
(Destination). 

e On receiving the data and error detection/correction code from source, the 
destination once again applies same error detectionicorrection function as has 
becr~ applied at source on the data received (but not on error detection/ 
correction code received from source) and generates destination error 
detectionicorrection code. 

e Source and destination error codes are compared to flag or correct an error as 
the case tnay be. 

The parity bit is only an error detection code. The concept of error detection and 

I-iarnnling error correcting code. 

Hamming Error-Cbrrecting Code: Richard Hamming at Bell Laboratories devised 
this code. We will just introduce this code with the help of an example for 4 bit data. 

Let us assume a four bit number b4, b3, b2. bl. In order to build a simple error 
detection code that detects error in one bit only, we may just add an odd parity bit. 
tlowever. if' we want to find which bi,t is in error then we may have to use parity bits 



I 
I 

for various combinations of these 4 bits such that a bit error can be identified 

Source Parity Destination Parity 

D 1 I 
1 

D2 

D3 

D4 I 

Now, a very interesting phenomena can be noticed in the above parity pairs. Suppose 
data bit bl is in error on transmission then, it will cause change in destination parity 

ERROR IN Cause change in Destination Parity 

Dl, D3, D4 1 
I 

Dl, D2, D4 

Dl, D2,D3, D4 

D2, D3, D4 

Figure 9 : The error detection parity code mismatch 

Thus, by simply comparing parity bits of source and destination we can identify that 
which of the four bits is in error. This bit then can be complemented to remove error. 
Please note that, even the source parity bit can be in error on transmission, however, 
under the assumption that only one bit (irrespective of data or parity) is in error, it will 
be detected as only one destination parity will differ. 

What should be the length of the error detection code that detects error in one bit? 
Before answering this question we have to look into the comparison logic of error 
detection. The error detection is done by comparing the two 'i' bit error detection and 
correction codes fed to the comparison logic bit by bit (refer to figure 8). Let us have I 

comparison logic, which produces a zero if the compared bits are same or else it 
produces a one. I 

Therefore, if similar Position bits are same then we get zero at that bit Position, but if 
they are different, that is, this bit position may point to some error, then this Particular 

- I 
bit position will be marked as one. This way a matching word is constructed. This 
matching word is 'i' bit long, therefore, can represent 2' values or combinations. 

For example, a 4-bit matching word can represent 24=16 values, which range from 0 

0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111 
! 
I 

1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111 

The value 0000 or 0 represent no error while the other values i.e. 2'-1 
(for 4 bits 24- 1 =IS, that is from 1 to 15) represent an error condition. Each of these 
2' - I (or 15 for 4 bits) values can be used to represent an error of a particular bit. 
Since, the error can occur during the transmission of 'N' bit data plus 'i' bit error 
correction code, thzrefore, we need to have at least 'N+iY error values to represent 
them. Therefore, the number of error correction bits should be found from the 
following equation: 

2' - 1 >= N+i 
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If we are assuming 8-bit word then we need to have 

2' - 1 >= 8+i 

Say at i=3 LHS = 23 -1 = 7; RHS = 8+3 = 11 

i=4 21-1 =24  - 1 = 1.5; RHS = 8+4 = 12 

Therefore, for an eight-bit word we need to have at least four-bit error correction code 
for detecting and correcting errors in a single bit during transmission. 

Similarly for 16 bit word we need to have i = 5 

z5-1 =31 and 16+i= 16+5=21 

For 16-bit word we need to have five error correcting bits. 

Let us explain this with the help of an example: 

Let us assume 4 bit data as 10 10 

The logic is shown in the following table: 

Source: 

Source Data Odd parity bits a t  source 

b4 b3 b2 b 1 P 1 P2 . P3 P4 

(bl, b2, b3) (b2, b3, b4) (b3, b4, b l )  (bl ,  b2, b3,b4 ) 

1 0 1 0 0 1 0 1 

This whole information, that is (data and PI to P4), is transmitted. 

Assuming one bit error in data. 

Case 1: Data received as 101 1 (Error in b l )  

Thus, P1 - Dl,  P3 - D3, P4 -D4 pair differ, thus, as per Figure 9, bl is in error, so 
correct it by completing b 1 to get correct data 1 0 10. 

Case 2: Data Received as 1000 (Error in b2) 

Thus, P1 - Dl,  P2 - D2. P4 - D4 pair differ, thus, as per figure 9,bit b2 is in 
error. So correct it by complementing it to get correct data 10 10. 

Case 3: 

Now let us take a case when data received is correct but on receipt one of the parity 
bit, let us say P4 become 0. Please note in this case since data is 1010 the destination 
parity bits will be D1=0, D2=1, D3=0, D4=1. Thus, PI- Dl ,  P2 - D2, P3 - D3, will 
be same but P4 -D4 differs. This does not belong to anp of the combinatio!,s in 
' 'w Q. Thus we conclude that P4 received is wrcng, 

b4 b3 b2 bl  D 1 D2 D3 D4 

(bl, b2, b3) (b2, b3, b4) (b3, b4, b l )  (bl, b2, b3,b4) 

1 0 1 0 0 I 0 1 

- 
b4 b3 b2 b 1 D l  D2 D3 D4 

(bl, b2, b3) (b2, b3, b4) (b3, b4, b l )  (bl, b2, b3,b4 ) 

1 0 0 0 0 1 0 0 



b4 b3 b2 bl D l  D2 D3 D4 

(bl , b2, b3) (b2, b3, b4) (b3, b4, b l )  (bl , b2, b3,b4 ) 

1 0 0 0 0 1 0 0 

Please not that all these above cases will fail in case error is in more than one Data Representation 

bits. Let us see by extending the above example. I 

Normally, Single Error Correction (SEC) code is used in semiconductor memories for I 

correction of single bit errors, however, it is supplemented with an added feature for 
detection of errors in two bits. This is called a SEC-DED (Single Error Correction- 

I 
Double Error Detecting) code. This code requires an additional check bit in 
comparison to SEC code. We will only illustrate the working principle of SEC-DED 
code with the help of an example for a 4-bit data word. Basically, the SEC-DED code 
guards against the errors of two bits in SEC codes. 

Let us assume now that two bit errors occur in data. 
Data received: 

b4 b3 b2 bl 

Thus, on -matching we find P3-D3 pair does not match. 
However, this information is wrong. Such problems can be identified by adding one 
more bit to this Single Error Detection Code. This is called Double Error Detection 

So our data now is 

b4 b3 b2 bl P i  P2 P3 P4 P5 (Overall parity of whole data) 

1 0 1 0 0 1 0 1 1  

Data receiving end. 

b4 b3 b2 bl D l  D2 D3 D4 D5 

1 1 0 0 0  1 1  1 0  

D5-P5 mismatch indicates that there is double bit error, so do not try to correct error, 
instead asks the sender to send the data again. Thus, the name single error correction, 
but double error detection, as this code corrects single bit errors but only detects error 

Check Your Progress 3 

1 )  Represent the following numbers in IEEE-754 floating point single precision 
number format: 

i) 1010. 0001 
ii) -0.0000 1 1 1 

2) Find the even and odd parity bits for the following 7-bit data: 

..................................................................................................................................... 

..................................................................................................................................... 



Introduction to Digital 3) Find the length of SEC code and SEC-DED code for a 16-bit word data transfer. 
Circuits 

..................................................................................................................................... 

..................................................................................................................................... 

..................................................................................................................................... 

2.7 SUMMARY 

This unit provides an in-depth coverage of the data representation in a computer 
system. We have also covered aspects relating to error detection mechanism. The 
unit covers number system, conversion of number system, conversion of numbers to a 
different number system. lt introduces the concept of computer arithmetic using 2's 
complement notation and provides introduction to information representation codes 
like ASCII, EBCDIC, etc. The concept of floating point numbers has also been 
covered with the help of a design example and IEEE-754 standard. Finally error 
detection and correction mechanism is detailed along with an example of SEC & 
SEC-DED code. 

fact, a course in an area of computer must be supplemented by hrther reading to keep 
your knowledge up to date, as the computer world is changing with by leaps and 
bounds. In addition to further reading the student is advised to study several Indian 
Journals on computers to enhance his knowledge. 

2.8 SOLUTIONSIANSWERS 

Check Your Progress 1 

1. 

(i) 23 22 2' 2' 2-I 2-2 2-3 24 
1 1 0 0  

thus; Integer = (1 x z3+l x 2'+0x 2'+0x 2') = (Z3+2') = (8+4) = 12 
Fraction = (1 x 2-'+I x 2-'+0x 2"+1 x Z4) = 2"+2-2+24 = 0.5+0.125 + 0.0625 =0.6875 

ii) 10101010 

2' 26 25 z4 23 2' 

128 64 32 16 8 4 

=I  0 1 

The decimal equivalent is 

= 1 x  1 2 8 + 0 x 6 4 +  1 x 3 2 + O x 1 6 + 1 x 8 + O x 4 + 1 x 2 + O x 1  

= 1 2 8 + 3 2 + 8 + 2 = 1 7 0  

i) 16 8 4 2 1 

1 0  1 1 1 
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1 Number I Quotient on ) Remainder 

So thc hex number is : 37C 

Check Your Progress 2 

I .  

4 i )  23inBCDis00100011 

iij 49.25 in BCD is0100 1001.00100101 

iii) 892 in BCD is 1000 I001 00 10 

2. 1's complement is obtained by complementing each bit while 2's complement is 
obtained by leaving the number unchanged till first lstarting from least 
significant bit after that complement each bit. 

( 0  (ii) (iii) 

Number 10100010 00000000 11001 100 

1 's complen~ent 01011101 11111111 001 1001 1 

2's complement 0101 11 10 00000000 001 10100 

3 .  We are using signed 2's complement notation 

(i) +50 is 0 0110010 
+5 is 0 0000101 

therefore -5 is 1 l l l l 0 L l  

carry out (discard the carry) 

Carry in to sign bit = 1 

Carry out of sign bit = I Therefore, no overflow 

The solution is 0010 1101= +45 

i i) +45 is 0 0101 101 
+65 is 0 100000 1 

Therefore, -65 is 1 0111111 
+4 5 0 0101 101 
- 65 w 

I 1101 100 

No carry into sign bit, no carry out of sign bit. Therefore, no overflow. 

Therefore, -20 is 1 1101100 



I 

which :s the given sum Data Representation 1 

+75 is 0 100101 1 
+85 is 0 1010101 I 

1 0 100000 
Carry into sign bit = 1 

I 

Carry out of sign bit = 0 
Overflow. 

Check Your Progress 3 

i) 1010.0001 
= 1.0100ooi ~2~ 
So, the single precision number is : 
Significand = 01 0 0001 000 0000 0000 0000 
Exponent =3+127= 130= 10000010 

Sign=O 
So the number is = 0 1000 0010 01 0 0001 0000 0000 0000 0000 

Significand = 110 0000 0000 0000 0000 0000 

1 0111 1010 110 0000 0000 0000 0000 0000 

Even parity bit Odd parity bit 

3. The equation fbr SEC code is 
2'-1 > =N+i I 

i --Number of bits in SEC code 
N -Number of bits in data word 

In, this case N = 1 6  

~ 
i - ?  

so the equation is 
~ 

2 ' - l > = 1 6 t i  
I 

24 -1  > =16+3 ~ 
15 ; = 20 Not true. 

3 1> = 21 True the condition is satisfied. 

Although, this condition will be true for i > 5 also but we want to use only minimum 
essential correction bits which are 5. 

For SEC-DED code we require an additional bit as ovcr:?ll parity. Therefore, the SEC- 
DED code will be of 6 bits. 
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