
UNIT 3 ALU ORGANISATION

I Structure
i

Page No.

3.0 Introduction 53
3.1 Objectives 53
3.2 ALIJ Organisation 5 3

3.2.1 A Simple ALU Organization
3.2.2 A Sample ALU Desip

3.3 Arithmetic Processors 62
3.4 Summaiy 63
3.5 Solutionsl Answers 64

3.0 INTRODUCTION

By now we have discussed the instruction sets and register organisation followed by a
discussion on micro-operations and instruction execution. In this unit, we will first
iiscuss the AI,U organisation. Then we will discuss the? floating point ALU and
uithmetic co-processors, which are commonly used for floating point computations.

I

This unit provides a detailed view on implementation of simple micro-opevtions that
include register-transfer, arithmetic, logic and shift micro-operation. Finally, the
~:onstruction of a simple ALU is given. Thus, this unit provides you the basic insight
tnto the compilter system. The next unit covers details of the control unit. Together
bese units describe the two most important components of CPU: the ALU and the
1ZU.

3.1 OBJECTIVES

.4fier going through this unit, you will be able to:

\ describe the basic organisation of ALU;
discuss the requirements of a floating point ALU;

8 define the term arithmetic coprocessor; and
* create simple arithmetic logic circuits.

i

3.2 ALU ORGANISATION

t , is discussed earlier, an ALU performs simple arithmetic-logic and shift operations.
'The complexity of an ALU depends on the type of instruction set which has been
realized for it. The simple ALUs can be constructed for fixed-point numbers. On the
other hand the floating-point arithmetic implementation requires more complex
control logic and data processing capabilities, i.e., the hardware. Several micro-
processor families utilize only fixed-point arithmetic capabilities in the ALUs. For
Iloating point arithmetic or other coniplex functions they may utilize an auxiliary
special purpose unit. This unit is called arithmetic co-processor. Let us discuss all
these issues in greater detail in this section.

2 . A Simple ALU Organisation

An ALU consists of circuits that perform data processing micro-operations. But how
elre these ALU circuits used in conjunction of other registers and control unit? The

-1

'The Central
Processing Unit

Bus A . A A

v v v
Accumulator Multiplier Data Register
Register (AC) Quotient - (DR)

Register (MQ)

A

7 7 -
Parallel Adder

and other Logic ' Control Unit -
Control Circuits

Flags
Signals

'

Figure 1: Structure of a Fixed point Arithmetic logic unit 1
The above structure has three registers AC, MQ and DR for data storage. Let us
assume that they are equal to one word each. Please note that the Parallel adders and
other logic circuits (these are the arithmetic, logic circuits) have two inputs and only
one output in this diagram. It implies that any ALU operation at most can have two
input values and will generate single output along with the other status bits. In the
present case the two inputs are AC and DR registers, while output is AC register. AC
and MQ registers are generally used as a single AC.MQ register. This register is
capable of left or right shift operations. Some of the micro-operations that can be
defined on this ALU are:

Addition : AC t AC+DR L

Subtraction : AC t AC - DR

AND : AC t ACADR

OR : A C t A C V D R

Exclusive OR : AC t AC (+) DR

NOT : A C t A C

In this ALU organisation multiplication and division were implemented using shift-
addlsubtract operations. The MQ (Multiplier-Quotient register) is a special register
used for implementation of multiplication and division. We are not giving the details
of how this register can be used for implementing multiplication and division
algorithms. For more details on these algorithms please refer to hrther readings. One
such algorithm is Booth's algorithm and you must refer to it in further readings.

For multiplication or division operations DR register stores the multiplicand or divisor
respectively. The result of multiplication or division on applying certain algorithm can

finally be obtained in AC.MQ register combination. These operations can be
" represented as:

Multiplication : AC.M 2 t DR x MQ

Division : AC.MQ t MQ - DR

DR is another important register, which is used for storing second operand. In fact it
acts as a buffer register, which stores the data brought from the memory for an
instruction. In machines where we have general purpose registers any of the registers - - -

can be utilized as AC, MQ and DR.

Bit Slice A1,Us

It was feasible to manufacture smaller such as 4 or 8 bits fixed point ALUs on a single
IC chip. If these chips are designed as expendable types then using these 4 or 8 bit
ALU chips we can make 16, 32,64 bit array like circuits. These are called bit- slice
ALUs.

The basic advantage of such ALUs is that these ALUs can be constructed for a desired
word size. More details on bit-slice ALUs can be obtained from further readings.

ALU 0rganisat:ion I

Check Your Progress 1 - I
State True or False l2-lL.l
1. A multiplication operation can be implemented as a logical operation,

.Ii 2. The multiplier-quotient register stores the remainder for a division operation. 0
3. A word is processed sequentially on a bit slice ALU.

3.2.2 A Sample ALU Design

The basis of ALU design starts with the micro-operation implementation. So, let us
first explain how the bus can be used for Data transfer micro-operations.

A digital computer has many registers, and rather than connecting wires between all
registers to transfer information between them, a common bus is used. Bus is a path
(consists of a g o u p of wires) one for each bit of a register, over which information is
transferred, from any of several sources to any of several destinations. In general the
size of this data bus should be equal to the number of bits in a general purpose
register.

A register is selected for. the transfer of data through bus with the help of control
signals. The common data transfer path, that is the bus, is made using the
multiplexers. The select lines are connected to the control inputs of the multiplexers
and the bits of one register are chosen thus allowing multiplexers to select a specific
source register for data transfer.

The construction of a bus system for four registers using 4x1 multiplexers is shown
below. Each register has four bits, numbered 0 through 3. Each multiplexer has 4 data
inputs, numbered 0 though 3, and two control or selection lines, Co and CI. The data

'fh inputs of 0" MUX are connected to the corresponding 0 input of every register to
form four lines of the bus. The 0" multiplexer multiplexes the four 0" bits of the
registers, and similarly for the three other multiplexers.

Since the same selection lines Co and CI are connected to all multiplexers, therefore
they choose the four bits of one register and transfer them into the four-line common

The Central
Processing Unit Register A Register B Register C Register D

+ .t $r 0
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

4 x I 4 x 1 4 x l 4 x l -
MUX 0 MUX 1

- M U X 2 MUX 3 - - -

co
- .
CI

4-line common bus

Figure 2: Implementation of BUS

When C, Co = 00, the 0' data input of all multiplexers are selected and this causes the
bus lines to receive the content of register A since the outputs of register A are
connected to the 0' data inputs of the multiplexers which is then applied to the output
that forms the bus. Similarly, when C, Co = 01, register B is selected, and so on. The
following table shows the register that is selected for each of the four possible values
of the selection lines:

I CI / co Register Selected

Fieure 3: Bus Line Selection 1

To construct a bus for 8 registers of 16 bits each, you would require 16 multiple
one, for each line in the bus. The number of multiplexers needed to construct the

:xers
bus

equal to the number of bits in each register. ~achmul t i~ lexe r must have eight data
input lines and three selection lines (2 = 8) to multiplex one bit in the eight registers.

Implementation of Arithmetic Circuits for Arithmetic Micro-operation

An arithmetic circuit can be implemented using a number of 111 adder circuits or
parallel adder circuits. Figure 4 shows a logical implementation of a 4-bit arithmetic
circuit. The circuit is constructed by using 4 full adders and 4 multiplexers.

4

a,

a,

b,

Logic 0

st FA D,
S"
0 4 x 1
1 MUX y, c.
2 I -

Figure 4: A Four-bit arithmetic circuit

The diagram of a 4-bit arithmetic circuit has four 4x 1 multiplexers and four full
adders (FA). Please note that the FULL ADDER is a circuit that can add two input
bits and a carry-in bit to produce one sum-bit and a carry-out-bit.

So what does the adder do? It just adds three bits. What does the multiplexer do? It
controls one of the input bits. Thus, such combination produces a series of micro-
operations.

Let us find out how the multiplexer control lines will change one af the Inputs for
Adder circuit. Please refer to the following table. (Please note the convention VALID
ONLY FOR THE TABLE are that an uppercase alphabet indicates a Data Word, . ' . .-
whereas the lowercase alphabet indicates a bit.')

The Central
, Processing Unit Control Output of 4 x 1 Multiplexers i Yi:put I Con~ments

Input

S, SO MUX(a) MUX(b) MUX(c) MUX(d) Adder
The data word B

0 0 bo b, b2 b3 B
I

is input to Full
Adders

- - - - - 1 's complement
0 1 b o '4 '32 '33 B of B is input to

, Full Adders 1
I

Data word 0 is
1 0 0 0 0 0 0 input to Full

Adders
Data word 1 11 1

1 1 FH = FH is input to
Full Adders

Figure 5: Multiplexer Inputs and Output of the Arithmetic Circuit of Figure 4

Now let us discuss how by coupling carry bit (Ch) with these input bits we can obtain
various micro-operations.

Input to Circuits

Register A bits as a,,,al, a2 and a3 in the corresponding X bits of the Full Adder
(FA).

Register B bits as given in the Figure 5 above as in the corresponding Y bits of
the FA.

Please note each bit of register A and register B is fed to different full adder
unit.

Please also note that each of the four inputs from A are applied to the X inputs
of the binary adder and each of the four inputs from B are connected to the data
inputs of the multiplexers. It means that the A input directly goes to adder but B
input can be manipulated through the Multiplexer to create a number of
different input values as given in the figure above. The B inputs through
multiplexers are controlled by two selection lines SI and So. Thus, using various
combinations of SI and So we can select data bits of B, complement of B, 0
word, or word having All 1 's.

The input carry Cin, which can be equal to 0 or 1, goes to the caky input of the
full adder in the least significant position. The other carries are cascaded from
one stage to the next. Logically it is the same as that of addition performed by
us. We do pass the carry of lower digits addition to higher digits. The output of
the binary adder is determined from the following arithmetic sum:

E j controlling the value of Y with the two selection lines S1 and So and making Ci,
equal to 0 or 1, it is possible to implement the eight arithmetic micro-operations listed
in the truth table.

D = A + B + l R t R l + R 2 + 1 Addwithcarry

- R t R1 + 2's
O = A + B+ complement of R2 Subtract
1 0 0 0 D = A R t R 1 Transfer
1 0 1 0 D = A + I R t R 1 + 1 Increment

1 1 0 1 D = A - I R t R1 + (All 1s) Decrement

1 1 1 , D = A R t R 1 Transfer
I I I

Figure 6: Arithmetic Circuit Function Table

I Let us refer to some of the cases in the table above.

When SISo = 00, input line B is enabled and its value is applied to the Y inputs of the
full adder. Now,

If input carry Cin = 0, the output will be D = A + B
If input carry C;, = 1, the output will be D = A + B + 1.

When SISo = 0 1, the complement of B is applied to the Y inputs of the full adder. So
If Ci, * 1, then output D = A + B + 1. This is called subtract micro-operation. (Why?)

Reason: Please observe the following example, where A = 01 11 and B=0110, then -
B = 100 1. The sum will be calculated as:

0111 (Value of A)
1001 i complement of B)

1 0000 + (Carry in =1) = 0001

Ignore the carry out bit. Thus, we get simple subtract operation.

If Cin = 0, then D = A + B. This is called subtract with borrow micro-operation.
4 (Why?). Let us look into the same addition as above:

01 1 1 (Value of A)
100 1 (Complement of B)

1 0000 + (Carry in =0) = 0000

This operation, thus, can be considered as equivalent to:

D = A + B .
=> D = (A - I) + (B + 1)
=> D = (A - 1) + 2's complement of B
=> D = (A - 1) - B Thus, is the name complement with Borrow

When SISt = 10, input value 0 is applied to Y inputs of the full adder.

IfCi.=O,thenoutputD=A+O+C,n => D = A
I f C i n = l , t h e n D = A + O + l = > D = A + 1

The first is a simple data transfer micro-operation; while the second is an increment

The Central
Processing Unit When S I S2 = 1 1, input word all 1 's is applied to Y inputs of the full adder. i

IfCin=O,thenoutputD-A+All(ls)+Ci, = > D = A - 1 (How?Letus
explain with the help of the following example).

Example: Let ils assume that the Register A is of 4 bits and contains the value 0101
and it is added to an all (1) value as:

0101

The 1 is cany out and is discarded. Thus, on addition with all (1 's) the number has
actually got decremented by one.

IfCin= 1, thenD=A+All(ls)+l = > D = A

The first is the decrement micro-operation; while the second is a data transfer micro-
operation.

Please note that the micro-operation D = A is generated twice, so there are only seven
distinct micro-operations possible through the proposed arithmetic circuit.

Implementation of Logic Micro-operations I

3 12 11 10 Function Operation Comyents
0 0 0 0 Fo=O R C 0 Clear
0 0 0 1 FI = X. y R e R 1 ~ R 2 AND -
0 0 1 O F 2 = x . y R+ R ~ A ~ R, AND with

complement RZ
P

0 rn 1 F 3 = x R t R1 Transfer of R, -
0 1 0 O F q = x . y R t FAR, Rz AND with

complement R,
0 1 0 1 F s = y R C R2 Transfer of R2
0 1 1 0 F 6 = x $ y R t RI @ R2 Exclusive OR
0 1 1 1 F ~ = x + Y R C R I v R 2 OR
1 0 0 O F8 = (G) R t --)

, I 0 0 F9 = (*I R R ~ (R , ~)

1 0 1
-

O FIO = Y R C R, Complement of R2
1 0. 1

-
FII = x + y R t RIvR2 RI OR with

complement R2 -
1 ' 1 ' 0 I 0 F , , = x ~t R, Complement of R!

1 1 0
-

F, ,=x + y R G F v R , R2°Rwith

complement RI
1 1 1

-
O F14 = (~ y) R t 'm) NAND

1 1 1 1 F15 = 1 R C All 1's Set all the Bits to 1

Please note that in the figure above the micro-operations are derived by replacing the ALU Organisat ion

x and y of Boolean function with registers R1 and R2 on each corresponding bit of the
registers R1 and R2. Each of these bits will be treated as binary variables.

I
In many conlputers only four: AND, OR, XOR (exclusive OR) and complement
micro-operations are implemented. The other 12 micro-operations can be derived
from these four micro-operations. Figure 8 shows one bit, which is the ith bit stage of

1 the four logic operations. Please note that the circuit consists of 4 gates and a 4 x 1
MUX. The i" bits of Register R1 and R2 are passed through the circuit. On the basis

I

, of selection inputs So and S, the desired micro-operation is obtained.

ih bit of R, -
ih bit of R,

-
[a) Logic Diagram

S, So. Olltp~t The Operation

o 0 F = R, A R, AND Operation

0 1 F ='R,v R, OR Operation

1 0 F = R,@R1 XOR Operation

I I F = R , Cornple~llells of
Register R,

(b) Functional representation

Figure 8: Logic diagram of one stage of logic circuit 6

Implementation of a Simple Arithmetic, Logic and Shift Unit

So, by now we have discussed how the arithmetic and logic micro-operations can be
implemented individually. If we combine these two circuits along with shifting logic
then we can have a possible simple structure of ALU. In effect ALU is a
combinatiorlal circuit whose inputs are contents of specific registers. The ALU
performs the desired micro-operation as determined by control signals on the input
and places the results in an output or destination register. The whole operation of ALU
can be performed in a single clock pulse, as it is a combinational circuit. The shift
operation can be performed in a sepa~ate unit but sometimes it can be made as a part
of overall ALU. The following figure gives a simple structure of one stage of an ALU.

Figure 9: One stage of ALU with shift capability

Please note that in this figure we have given reference to two previous figures for
arithmetic and logic circuits. This stage of ALU has two data inputs; the i" bits of the
registers to be manipulated. However, the (i - l)th or (i+l)" bit is also fed for the case
of shift micro-operation of only one register. There are four selection lines, which

The Central
Processing Unit determine what micro-operation (arithmetic, logic or shift) on the input. The Fi is the

resultant bit after desired micro-operation. Let us see how the value of Fi changes on
the basis of the four select inputs. This is shown in Figure 10:

Please note that in Figure 10 arithmetic micro-operations have both Sg and Sz bits as
zero. Input Ci is important for only arithmetic micro-operations. For logic micro-
operations S3, SZ values are 01. The values 10 and 1 1 cause shift micro-operations.
For this shift micro-operation S, and So values and Ci values do not play any role.

(s3 s2 s1 so Ci (F Micro- Name
operation

F = x R t R , Transfer
F = x+l R ~ R ; + I Increment
F = x+y R t R I + R 2 Addition
F = x+yt l R t R l + R 2 + l Addition

with cany - l o O O (F = x + y R + R ~ + R , Subtract
with borrow

1 0 0 I O l F = x + (y + 1) - R t R l - R2 Subtract

F = x - 1 R t R l - I Decrement
F = x R t R , Transfer

F = X.Y R t R l AR, AND
F = x+y R t R , v R 2 OR
F = X @ Y R t R , Q R2 Exclusive

OR
Complement

Arithmetic
Micro-operation

I Logic
Micro-operation

1 0 - - - F=Shl(x) R t Shl(RI) Shift left Shift Micro-
] I - - - F = Shr(y) RCShr(RI) Shift right operations

Figure 10: Micro-operations performed by a Sample ALU

3.3 ARITHMETIC PROCESSORS

The questions in this regard are: "What is an arithmetic processor?" and, "What is the
need for arithmetic processors?"

A typical CPU needs most of the control and data processing hardwake for
implementing non-arithmetic functions. As the hardware costs are directly related to
chip area, a floating point circuit being complex in nature is costly to implement. They
need not be included in the instruction set of a CPU. In such systems, floating-point
operations were implemented by using software routines.

This implementation of floating point arithmetic is definitely slower than the hardware
implementation. Now, the question is whether a processor can be constructed only for
arithmetic operations. A processor, if devoted exclusively to arithmetkfunctions, can
be used to implement a full range of arithmetic functions in the hardware at a
relatively low cost. This can be done in a single Integrated Circuit. Thus, a special
purpose arithmetic processor, for performing only the arithmetic operations, can be
constructed. This processor physically may be separate, yet can be utilized by the
CPU to execute complex arithmetic instructions. Please note in the absence of
arithmetic processors, these instructions may be executed using the slower software
routines'by the CPU itself. Thus, this auxiliary processor enhances the speed of
execution of programs having a lot of complex arithmetic computations.

An ,xithetic processor also helps in reducing program complexity, as it provides a
richer instruction set for a machine. Some of the instructions that can be assigned to
aritlunetic processors can be related to the addition, subtraction, multiplication, and
division of floating point numbers, exponentiation, logarithms and other trigonometric
functions.

HOW can this arithmetic processor be connected to the CPU?

I Tw'o mechanisms are used for connecting the arithmetic processor to the CPU.

If an arithmetic processor is treated as one of the Input 1 Output or peripheral units
then it is termed as a peripheral processor. The CPU sends data and instructions to the
peripheral processor, which performs the required operations on the data and
cornrnunicates the results back to the CPU. A peripheral processor has several
registers to comniunicate with the CPU. These registers may be addressed by the CPU
as Input /Output register addresses. The CPU and peripheral processors are normally
quite independent and communicate with each other by exchange of information using
data transfer instructions. The data transfer instructions must be specific instructions
in lhe CPU. This type of connection is called loosely coupled.

On the other hand if the arithmetic processor has a register and instruction set which
can be considered an extension of the CPU registers and instruction set, then it is
called a tightly coupled processor. Here the CPU reserves a special subset of &ode for
arithmetic processor. In such a system the instructions meant for arithmetic processor
are fetched by CPU and decoded jointly by CPU and the arithmetic processor, and
finally executed by arithmetic processor. Thus, these processors can be considered a
loi jcal extension of the CPU. Such attached arithmetic processors are termed as co-
processors.

The concept of co-processor existed in the 8086 machine till Intel 486 machines
where co-processor was separate. However, Pentium at present does not have a
separate co-processor. Similarly, peripheral processors are not found as arithmetic
processors in general. However, many chips are used for specialized 110 architecture.
These can be found in further readings.

Check Your Progress 2

I . Draw the logic circuit for a ALU unit.

' 2. What is an Arithmetic Processor?
..
.. .
.. - ~ ~

3.4 SUMMARY -
In this unit, we have discussed in detail the hardware implementation of micro-
01)erations. The unit starts with an implementation of bus, which is the backbone for
any register transfer operation. This is followed by a discussion on arithmetic circuit
and micro-operation thereon using full adder circuits. The logic micro-operation
irnplementation has also been discussed. Thus, leading to a logical construction of a .
simple arithmetic - logic -shift unit. The unit revolves around the basic ALU with the
h'elp of the units that are constructed for the implementation of micro-operations.

ALU Organisation

hi the later part of the unit, we discussed the arithmetic processors. Finally, we have
presented a few chipsets that support the working of a processor for inputloutput
fimctions from key board, printer etc.

63

The Central
Processing Unit

