

Structures and

Unions

UNIT 9 STRUCTURES AND UNIONS

Structure

9.0 Introduction
9.1 Objectives
9.2 Declaration of Structures
9.3 Accessing the Members of a Structure
9.4 Initializing Structures
9.5 Structures as Function Arguments
9.6 Structures and Arrays
9.7 Unions
9.8 Initializing an Union
9.9 Accessing the Members of an Union
9.10 Summary
9.11 Solutions / Answers
9.12 Further Readings

9.0 INTRODUCTION

We have seen so far how to store numbers, characters, strings, and even large sets of
these primitives using arrays, but what if we want to store collections of different
kinds of data that are somehow related. For example, a file about an employee will
probably have his/her name, age, the hours of work, salary, etc. Physically, all of that
is usually stored in someone’s filing cabinet. In programming, if you have lots of
related information, you group it together in an organized fashion. Let’s say you have
a group of employees, and you want to make a database! It just wouldn’t do to have
tons of loose variables hanging all over the place. Then we need to have a single data
entity where we will be able to store all the related information together. But this
can’t be achieved by using the arrays alone, as in the case of arrays, we can group
multiple data elements that are of the same data type, and is stored in consecutive
memory locations, and is individually accessed by a subscript. That is where the user-
defined datatype Structures come in.

Structure is commonly referred to as a user-defined data type. C’s structures allow
you to store multiple variables of any type in one place (the structure). A structure
can contain any of C’s data types, including arrays and other structures. Each variable
within a structure is called a member of the structure. They can hold any number of
variables, and you can make arrays of structures. This flexibility makes structures
ideally useful for creating databases in C. Similar to the structure there is another user
defined data type called Union which allows the programmer to view a single storage
in more than one way i.e., a variable declared as union can store within its storage
space, the data of different types, at different times. In this unit, we will be discussing
the user-defined data type structures and unions.

9.1 OBJECTIVES

After going through this unit you should be able to:

• declare and initialize the members of the structures;
• access the members of the structures;
• pass the structures as function arguments;
• declare the array of structures;
• declare and define union; and
• perform all operations on the variables of type Union.

9.2 DECLARATION OF STRUCTURES

5

Structures, Pointers
and File Handling

To declare a structure you must start with the keyword struct followed by the
structure name or structure tag and within the braces the list of the structure’s
member variables. Note that the structure declaration does not actually create any
variables. The syntax for the structure declaration is as follows:

struct structure-tag {
 datatype variable1;
 datatype variable2;
 dataype variable 3;
 ...
 };

For example, consider the student database in which each student has a roll number,
name and course and the marks obtained. Hence to group this data with a structure-
tag as student, we can have the declaration of structure as:

struct student {
 int roll_no;
 char name[20];
 char course[20];
 int marks_obtained ;
 };

The point you need to remember is that, till this time no memory is allocated to the
structure. This is only the definition of structure that tells us that there exists a user-
defined data type by the name of student which is composed of the following
members. Using this structure type, we have to create the structure variables:

 struct student stud1, stud2 ;

At this point, we have created two instances or structure variables of the user-defined
data type student. Now memory will be allocated. The amount of memory allocated
will be the sum of all the data members which form part of the structure template.

The second method is as follows:

struct {
 int roll_no;
 char name[20];
 char course[20];
 int marks_obtained ;
 } stud1, stud2 ;

In this case, a tag name student is missing, but still it happens to be a valid
declaration of structure. In this case the two variables are allocated memory
equivalent to the members of the structure.

The advantage of having a tag name is that we can declare any number of variables of
the tagged named structure later in the program as per requirement.

If you have a small structure that you just want to define in the program, you can do
the definition and declaration together as shown below. This will define a structure of
type struct telephone and declare three instances of it.

Consider the example for declaring and defining a structure for the telephone billing
with three instances:

struct telephone{
 int tele_no;
 int cust_code;

6

Structures and

Unions

 char cust_address[40];
 int bill_amt;
 } tele1, tele2, tele3;

The structure can also be declared by using the typedefinition or typedef. This can be
done as shown below:

typedef struct country{
 char name[20];
 int population;
 char language[10];
 } Country;

This defines a structure which can be referred to either as struct country or Country,
whichever you prefer. Strictly speaking, you don’t need a tag name both before and
after the braces if you are not going to use one or the other. But it is a standard
practice to put them both in and to give them the same name, but the one after the
braces starts with an uppercase letter.

The typedef statement doesn’t occupy storage: it simply defines a new type. Variables
that are declared with the typedef above will be of type struct country, just like
population is of type integer. The structure variables can be now defined as below:

Country Mexico, Canada, Brazil;

9.3 ACCESSING THE MEMBERS OF A
 STRUCTURE

Individual structure members can be used like other variables of the same type.
Structure members are accessed using the structure member operator (.), also called
the dot operator, between the structure name and the member name. The syntax for
accessing the member of the structure is:

structurevariable. member-name;

Let us take the example of the coordinate structure.

struct coordinate{
 int x;
 int y;
 };
Thus, to have the structure named first refer to a screen location that has coordinates

x=50, y=100, you could write as,

first.x = 50;
first.y = 100;
To display the screen locations stored in the structure second, you could write,

printf ("%d,%d", second.x, second.y);
The individual members of the structure behave like ordinary date elements and can
be accessed accordingly.

Now let us see the following program to clarify our concepts. For example, let us see,
how will we go about storing and retrieving values of the individual data members of
the student structure.

Example 9.1

/*Program to store and retrieve the values from the student structure*/

7

Structures, Pointers
and File Handling

#include<stdio.h>
struct student {
 int roll_no;
 char name[20];
 char course[20];
 int marks_obtained ;
 };
main()
{
student s1 ;
printf (“Enter the student roll number:”);
scanf (“%d”,&s1.roll_no);
printf (“\nEnter the student name: “);
scanf (“%s”,s1.name);
printf (“\nEnter the student course”);
scanf (“%s”,s1.course);
printf (“Enter the student percentage\n”);
scanf (“%d”,&s1.marks_obtained);
printf (“\nData entry is complete”);
printf (“\nThe data entered is as follows:\n”);
printf (“\nThe student roll no is %d”,s1.roll_no);
printf (“\nThe student name is %s”,s1.name);
printf (“\nThe student course is %s”,s1.course);
printf (“\nThe student percentage is %d”,s1.marks_obtained);
}

OUTPUT

Enter the student roll number: 1234
Enter the student name: ARUN
Enter the student course: MCA
Enter the student percentage: 84
Date entry is complete

The data entered is as follows:
The student roll no is 1234
The student name is ARUN
The student course is MCA
The student percentage is 84

Another way of accessing the storing the values in the members of a structure is by
initializing them to some values at the time when we create an instance of the data
type.

9.4 INITIALIZING STRUCTURES

Like other C variable types, structures can be initialized when they’re declared. This
procedure is similar to that for initializing arrays. The structure declaration is
followed by an equal sign and a list of initialization values is separated by commas
and enclosed in braces. For example, look at the following statements for initializing
the values of the members of the mysale structure variable.

Example 9.2

struct sale {
 char customer[20];
 char item[20];
 float amt;

 } mysale = { "XYZ Industries",

8

Structures and

Unions

 “toolskit",
 600.00
 };

In a structure that contains structures as members, list the initialization values in
order. They are placed in the structure members in the order in which the members
are listed in the structure definition. Here’s an example that expands on the previous
one:

Example 9.3

struct customer {
 char firm[20];
 char contact[25];
 }

struct sale {
 struct customer buyer1;
 char item [20];
 float amt;
 } mysale = {
 { "XYZ Industries", "Tyran Adams"},
 "toolskit",
 600.00
 };

These statements perform the following initializations:
• the structure member mysale.buyer1.firm is initialized to the string “XYZ
 Industries”.

• the structure member mysale.buyer1.contact is initialized to the string “Tyran
 Adams”.
• the structure member mysale.item is initialized to the string "toolskit".
• the structure member mysale.amount is initialized to the amount 600.00.

For example let us consider the following program where the data members are
initialized to some value.

Example 9.4

Write a program to access the values of the structure initialized with some initial
values.

/* Program to illustrate to access the values of the structure initialized with some
initial values*/

#include<stdio.h>
struct telephone{
 int tele_no;
 int cust_code;
 char cust_name[20];
 char cust_address[40];
 int bill_amt;
 };
main()
{
 struct telephone tele = {2314345,
 5463,
 "Ram",
 "New Delhi",

9

Structures, Pointers
and File Handling

 2435 };

printf("The values are initialized in this program.");
printf("\nThe telephone number is %d",tele.tele_no);
printf("\nThe customer code is %d",tele.cust_code);
printf("\nThe customer name is %s",tele.cust_name);
printf("\nThe customer address is %s",tele.cust_address);
printf("\nThe bill amount is %d",tele.bill_amt);
}

OUTPUT

The values are initialized in this program.
The telephone number is 2314345
The customer code is 5463
The customer name is Ram
The customer Address is New Delhi
The bill amount is 2435

Check Your Progress 1

1. What is the difference between the following two declarations?
 struct x1{……….};
 typedef struct{………}x2;

…………………………………………………………………………………………

…………………………………………………………………………………………

2. Why can’t you compare structures?

…………………………………………………………………………………………

…………………………………………………………………………………………..

3. Why does size of report a larger size than, one expects, for a structure type, as if
 there were padding at the end?

…………………………………………………………………………………………

…………………………………………………………………………………………

4. Declare a structure and instance together to display the date.

…………………………………………………………………………………………

…………………………………………………………………………………………

9.5 STRUCTURES AS FUNCTION ARGUMENTS

C is a structured programming language and the basic concept in it is the modularity
of the programs. This concept is supported by the functions in C language. Let us
look into the techniques of passing the structures to the functions. This can be
achieved in primarily two ways: Firstly, to pass them as simple parameter values by
passing the structure name and secondly, through pointers. We will be concentrating
on the first method in this unit and passing using pointers will be taken up in the next
unit. Like other data types, a structure can be passed as an argument to a function.
The program listing given below shows how to do this. It uses a function to display
data on the screen.

10

Structures and

Unions

Example 9.5

Write a program to demonstrate passing a structure to a function.

/*Program to demonstrate passing a structure to a function.*/

#include <stdio.h>

/*Declare and define a structure to hold the data.*/

struct data{
 float amt;
 char fname [30];
 char lname [30];
 } per;

main()
{
void print_per (struct data x);
printf(“Enter the donor’s first and last names separated by a space:”);
scanf (“%s %s”, per.fname, per.lname);
printf (“\nEnter the amount donated in rupees:”);
scanf (“%f”, &per.amt);
print_per (per);
return 0;
 }

void print_per(struct data x)
{
 printf ("\n %s %s gave donation of amount Rs.%.2f.\n", x.fname, x.lname, x.amt);
}

OUTPUT

Enter the donor’s first and last names separated by a space: RAVI KANT
Enter the amount donated in rupees: 1000.00
RAVI KANT gave donation of the amount Rs. 1000.00.

You can also pass a structure to a function by passing the structure’s address (that is,
a pointer to the structure which we will be discussing in the next unit). In fact, in the
older versions of C, this was the only way to pass a structure as an argument. It is not
necessary now, but you might see the older programs that still use this method. If you
pass a pointer to a structure as an argument, remember that you must use the indirect
membership operator () to access structure members in the function.

Please note the following points with respect to passing the structure as a parameter
to a function.
• The return value of the called function must be declared as the value that is being

returned from the function. If the function is returning the entire structure then
the return value should be declared as struct with appropriate tag name.

• The actual and formal parameters for the structure data type must be the same as
the struct type.

• The return statement is required only when the function is returning some data.
• When the return values of type is struct, then it must be assigned to the structure

of identical type in the calling function.

Let us consider another example as shown in the Example 9.6, where structure salary
has three fields related to an employee, namely - name, no_days_worked and
daily_wage. To accept the values from the user we first call the function get_data that

11

Structures, Pointers
and File Handling

gets the values of the members of the structure. Then using the wages function we
calculate the salary of the person and display it to the user.

Example 9.6

Write a program to accept the data from the user and calculate the salary of the
person using concept of functions.

/* Program to accept the data from the user and calculate the salary of the person*/

#include<stdio.h>
main()
{
 struct sal {
 char name[30];
 int no_days_worked;
 int daily_wage; };
 struct sal salary;
 struct sal get_dat(struct); /* function prototype*/
 float wages(struct); /*function prototype*/
 float amount_payable; /* variable declaration*/
 salary = get_data(salary);
 printf(“The name of employee is %s”,salary.name);
 printf(“Number of days worked is %d”,salary.no_daya_worked);
 printf(“The daily wage of the employees is %d”,salary.daily_wage);
 amount_payable = wages(salary);
 printf(“The amount payable to %s is %f”,salary.name,amount_payable);
}

struct sal get_data(struct sal income)
 {
 printf(“Please enter the employee name:\n”);
 scanf(“%s”,income.name);
 printf(“Please enter the number of days worked:\n”);
 scanf(“%d”,&income.no_days_worked);
 printf(‘Please enter the employee daily wages:\n”);
 scanf(“%d”,&income.daily_wages);
 return(income);
 }

float wages(struct)
{
 struct sal amt;
 int total_salary ;
 total_salary = amt.no_days_worked * amt.daily_wages;
 return(total_salary); }

Check Your Progress 2

1. How is structure passing and returning implemented?

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

2. How can I pass constant values to functions which accept structure arguments?

12

Structures and

Unions

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

3. What will be the output of the program?

 #include<stdio.h>
 main()
 {
 struct pqr{
 int x ;
 };
 struct pqr pqr ;
 pqr.x =10 ;
 printf (“%d”, pqr.x);
 }

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

9.6 STRUCTURES AND ARRAYS

Thus far we have studied as to how the data of heterogeneous nature can be grouped
together and be referenced as a single unit of structure. Now we come to the next step
in our real world problem. Let’s consider the example of students and their marks. In
this case, to avoid declaring various data variables, we grouped together all the data
concerning the student’s marks as one unit and call it student. The problem that arises
now is that the data related to students is not going to be of a single student only. We
will be required to store data for a number of students. To solve this situation one
way is to declare a structure and then create sufficient number of variables of that
structure type. But it gets very cumbersome to manage such a large number of data
variables, so a better option is to declare an array.

So, revising the array for a few moments we would refresh the fact that an array is
simply a collection of homogeneous data types. Hence, if we make a declaration as:

int temp[20];

It simply means that temp is an array of twenty elements where each element is of
type integer, indicating homogenous data type. Now in the same manner, to extend
the concept a bit further to the structure variables, we would say,

struct student stud[20] ;

It means that stud is an array of twenty elements where each element is of the type
struct student (which is a user-defined data type we had defined earlier). The various
members of the stud array can be accessed in the similar manner as that of any other
ordinary array.

For example,
struct student stud[20], we can access the roll_no of this array as

stud[0].roll_no;
stud[1].roll_no;
stud[2].roll_no;
stud[3].roll_no;

13

Structures, Pointers
and File Handling

…
…
…
stud[19].roll_no;

Please remember the fact that for an array of twenty elements the subscripts of the
array will be ranging from 0 to 19 (a total of twenty elements). So let us now start by
seeing how we will write a simple program using array of structures.

Example 9.7

Write a program to read and display data for 20 students.

/*Program to read and print the data for 20 students*/

#include <stdio.h>
struct student { int roll_no;
 char name[20];
 char course[20];
 int marks_obtained ;
 };
main()
{
 struct student stud [20];
 int i;
 printf (“Enter the student data one by one\n”);
 for(i=0; i<=19; i++)
 {
 printf (“Enter the roll number of %d student”,i+1);
 scanf (“%d”,&stud[i].roll_no);
 printf (“Enter the name of %d student”,i+1);
 scanf (“%s”,stud[i].name);
 printf (“Enter the course of %d student”,i+1);
 scanf (“%d”,stud[i].course);
 printf (“Enter the marks obtained of %d student”,i+1);
 scanf (“%d”,&stud[i].marks_obtained);
 }
 printf (“the data entered is as follows\n”);
 for (i=0;i<=19;i++)
 {
 printf (“The roll number of %d student is %d\n”,i+1,stud[i].roll_no);
 printf (“The name of %d student is %s\n”,i+1,stud[i].name);
 printf (“The course of %d student is %s\n”,i+1,stud[i].course);
 printf (“The marks of %d student is %d\n”,i+1,stud[i].marks_obtained);
 }
}

The above program explains to us clearly that the array of structure behaves as any
other normal array of any data type. Just by making use of the subscript we can
access all the elements of the structure individually.

Extending the above concept where we can have arrays as the members of the
structure. For example, let’s see the above example where we have taken a structure
for the student record. Hence in this case it is a real world requirement that each
student will be having marks of more than one subject. Hence one way to declare the
structure, if we consider that each student has 3 subjects, will be as follows:

struct student {
 int roll_no;
 char name [20];

14

Structures and

Unions

 char course [20];
 int subject1 ;
 int subject2;
 int subject3;

 };

The above described method is rather a bit cumbersome, so to make it more efficient
we can have an array inside the structure, that is, we have an array as the member of
the structure.
struct student {
 int roll_no;
 char name [20];
 char course [20];
 int subject [3] ;
 };

Hence to access the various elements of this array we can the program logic as
follows:

Example 9.8

/*Program to read and print data related to five students having marks of three
subjects each using the concept of arrays */

#include<stdio.h>
struct student {
 int roll_no;
 char name [20];
 char course [20];
 int subject [3] ;
 };
main()
{
 struct student stud[5];
 int i,j;
printf (“Enter the data for all the students:\n”);
for (i=0;i<=4;i++)
{
printf (“Enter the roll number of %d student”,i+1);
scanf (“%d”,&stud[i].roll_no);
printf(“Enter the name of %d student”,i+1);
scanf (“%s”,stud[i].name);
printf (“Enter the course of %d student”,i+1);
scanf (“%s”,stud[i].course);
for (j=0;j<=2;j++)
 {
 printf (“Enter the marks of the %d subject of the student %d:\n”,j+1,i+1);
 scanf (“%d”,&stud[i].subject[j]);
 }
}
printf (“The data you have entered is as follows:\n”);
for (i=0;i<=4;i++)
 {

printf (“The %d th student's roll number is %d\n”,i+1,stud[i].roll_no);
printf (“The %d the student's name is %s\n”,i+1,stud[i].name);
printf (“The %d the student's course is %s\n”,i+1,stud[i].course);
for (j=0;j<=2;j++)

 {
printf (“The %d the student's marks of %d I subject are %d\n”,i+1, j+1,
stud[i].subject[j]);

15

Structures, Pointers
and File Handling

 }
 }
 printf (“End of the program\n”);
}

Hence as described in the example above, the array as well as the arrays of structures
can be used with efficiency to resolve the major hurdles faced in the real world
programming environment.

9.7 UNIONS

Structures are a way of grouping homogeneous data together. But it often happens
that at any time we require only one of the member’s data. For example, in case of
the support price of shares you require only the latest quotations. And only the ones
that have changed need to be stored. So if we declare a structure for all the scripts, it
will only lead to crowding of the memory space. Hence it is beneficial if we allocate
space to only one of the members. This is achieved with the concepts of the UNIONS.
UNIONS are similar to STRUCTURES in all respects but differ in the concept of
storage space.

A UNION is declared and used in the same way as the structures. Yet another
difference is that only one of its members can be used at any given time. Since all
members of a Union occupy the same memory and storage space, the space allocated
is equal to the largest data member of the Union. Hence, the member which has been
updated last is available at any given time.

For example a union can be declared using the syntax shown below:

union union-tag {
 datatype variable1;
 datatype variable2;
 ...
 };

For example,
union temp{
 int x;
 char y;
 float z;
 };

In this case a float is the member which requires the largest space to store its value
hence the space required for float (4 bytes) is allocated to the union. All members
share the same space. Let us see how to access the members of the union.

Example 9.9

Write a program to illustrate the concept of union.

/* Declare a union template called tag */
union tag {
 int nbr;
 char character;
 }
/* Use the union template */
union tag mixed_variable;
/* Declare a union and instance together */
union generic_type_tag {
 char c;
 int i;

16

Structures and

Unions

 float f;
 double d;
 } generic;

9.8 INITIALIZING AN UNION

Let us see, how to initialize a Union with the help of the following example:

Example 9.10

union date_tag {
 char complete_date [9];
 struct part_date_tag {
 char month[2];
 char break_value1;
 char day[2];
 char break_value2;
 char year[2];
 } parrt_date;
 }date = {“01/01/05”};

9.9 ACCESSING THE MEMBERS OF AN UNION

Individual union members can be used in the same way as the structure members, by
using the member operator or dot operator (.). However, there is an important
difference in accessing the union members. Only one union member should be
accessed at a time. Because a union stores its members on top of each other, it’s
important to access only one member at a time. Trying to access the previously stored
values will result in erroneous output.

Check Your Progress 3

1. What will be the output?

#include<stdio.h>
main()
{
union{
 struct{

 char x;
 char y;
 char z;
 char w;

}xyz;

 struct{
 int p;
 int q ;

}pq;
 long a ;
 float b;
 double d;
 }prq;
 printf (“%d”,sizeof(prq));
 }

9.10 SUMMARY

17

Structures, Pointers
and File Handling

In this unit, we have learnt how to use structures, a data type that you design to meet
the needs of a program. A structure can contain any of C’s data types, including other
structures, pointers, and arrays. Each data item within a structure, called a member, is
accessed using the structure member operator (.) between the structure name and the
member name. Structures can be used individually, and can also be used in arrays.

Unions were presented as being similar to structures. The main difference between a
union and a structure is that the union stores all its members in the same area. This
means that only one member of a union can be used at a time.

9.11 SOLUTIONS / ANSWERS

Check Your Progress 1

1. The first form declares a structure tag; the second declares a typedef. The main

difference is that the second declaration is of a slightly more abstract type - users
do not necessarily know that it is a structure, and the keyword struct is not used
while declaring an instance.

2. There is no single correct way for a compiler to implement a structure

comparison consistent with C’s low-level flavor. A simple byte-by-byte
comparison could detect the random bits present in the unused “holes” in the
structure (such padding is used to keep the alignment of later fields correct). A
field-by-field comparison for a large structure might require an inordinate
repetitive code.

3. Structures may have this padding (as well as internal padding), to ensure that

alignment properties will be preserved when an array of contiguous structures is
allocated. Even when the structure is not part of an array, the end padding remains,
so that sizeof can always return a consistent size.

4. struct date {
 char month[2];
 char day[2];
 char year[4];

 } current_date;

Check Your Progress 2

1. When structures are passed as arguments to functions, the entire structure is

typically pushed on the stack, using as many words. (Programmers often choose
to use pointers instead, to avoid this overhead). Some compilers merely pass a
pointer to the structure, though they may have to make a local copy to preserve
pass-by value semantics.

 Structures are often returned from functions in a pointed location by an extra,
compiler-supplied “hidden” argument to the function. Some older compilers used
a special, static location for structure returns, although this made structure -
valued functions non-reentrant, which ANSI C disallows.

2. C has no way of generating anonymous structure values. You will have to use a

temporary structure variable or a little structure - building function.

3. 10

Check Your Progress 3

1. 8

18

Structures and

Unions

9.12 FURTHER READINGS

1. The C Programming Language, Kernighan & Richie, PHI Publication, 2002.
2. Computer Science A structured programming approach using C,

Behrouza .Forouzan, Richard F. Gilberg, Second Edition, Brooks/Cole,
Thomson Learning, 2001.

3. Programming with C, Schaum Outlines, Second Edition, Gottfried, Tata McGraw
Hill, 2003.

19

	Structure

