UNIT 2 THE INPUT/OUTPUT SYSTEM

Structure Page No.
2.0 Introduction 43
2. Objectives . 43
2.2 Input/ Output Devices or External or Peripheral Devices 43
2.3 The Input Output Interface 44
2.4 The Device Controllers and its Structure 46

2.4.1 Device Controller

2.4.2 Structure of an Input /Output Interface
2.5 Device Drivers 48
2.5 Input Output Techniques 50

2.6.1 Programmed Input /Output

2.6.2 Interrupt-Driven Input /Output

2.6.3 Interrupt-Processing

2.6.4 DMA (Direct Memory Access)

2.7 Input Output Processors 59
2.8 External Communication Interfaces 61
2.9 Summary 62
2.10 Solutions /Answers 62

2.0 INTRODUCTION

In the previous Unit, we have discussed the memory system for a compuier system
that contains primary memory, secondary memory, high speed memory and their
technologies; the memory system of micro-computers i.e.. their chips and types of
memory. Another important component in addition to discussing the memory system
will be the input/output system. In this unit we will discuss Input /Output controllers,
device drivers, the structure of 1/O interface, the 1/0 techniques. We will also discuss
about the Input / Output processors which were quite common in mainframe
computers. '

2.1 OBJECTIVES

At the end of this unit you should be able to:

e identify the structure of input/output interface;

e identify the concepts of device drivers and device controllers;

e describe the input/output techniques, i.e., programmed 1/O, interrupt-driven [/O
and direct memory access;

e define an input/output processor;

e describe external communication interfaces such as serial and parallel interfaces;
and

e define interrupt processing.

A

2.2 INPUT/ OUTPUT DEVICES OR EXTERNAL
OR PERIPHERAL DEVICES

Before going on to discuss the input/ output sub/systems of a computer, let us discuss
how a digital computer system can be implemented by a microcomputer system. A
tvpical microcomputer system consists of a microprocessor plus memory and 1/0
interface. The various components that form the system are linked through buses that
transfer instructions, data, addresses and control information among the components
The block diagram of a microcomputer system is shown in Figure. 1.

43

Local Bus
(Internal Bus to

Basic Computer Motherboard
Organisation "CPU ? Main memor
in ory
CU__ALU —-— (RAM and
ROM)
Registers
Video Keyboard
Processor
EISA .
[a— —
T vy
Display Mouse FDD
Device USB & other /O Buses

K A >

1 Mouse Digital " >
camera SCSl1 ‘e }

- e - { > CD ROM | Priter
Additional Primary
"RAM/ROM HDD

LAN/Network

LAN l Ethernet \ Modem
Printer

Figure 1: Block Diagram of a Microcomputer System

The microcomputer has a single microprocessor, a number of RAM and ROM chips -
and an interface units communicates with various external devices through the'I/O
Bus.

The Input / Output subsystem of a computer, referred to as I/0, provides an efficient
mode of communication between the central system and the output environment.
External devices that are under the direct control of the computers are said to be
connected on-line. These devices are designed to read information into or out of the
memory unit upon command from the CPU and are considered to be part of the
computer system. Input / Output devices attached to the computer are also called
peripherals. We can broadly classify peripherals or external devices into 3 categories:

¢ Human readable: suitable for communicating with the computer user, ¢.g., video
display terminals (VDTs) & printers.

e Machine-readable: suitable for communicating with equipment, e.g., magnetic
disks and tape system.

e Communication: suitable for communicating with remote devices, e.g., terminal,
a machine-readable device. '

2.3 THE INPUT /OUTPUT INTERFACE

The Input /Qutput interface provides a method for transferring information between
internal storage and external I/O devices. Peripherals connected to a computer need
special communication links for interfacing them with the CPU. The purpose of the

communication link is to resolve the differences that exist between the central The Input / (S)uttput
computer and each peripheral. The major differences are: ystem.

e Peripherals are electromagnetic and electromechanical devices and their
operations are different from the operation of the CPU and the memory, which
are electronic devices.

e The data transfer rate of peripherals is usually slower than the transfer rate of the
CPU, and consequently a synchronization mechanism may be needed.

e Data codes and formats in peripherals differ from the word format in the CPU
and memory. ’

e The operating modes of peripherals are different from each other and each must
be controlled so as not to disturb the operation of other peripherals connected to
the CPU.

To resolve these differences, computer systems include special hardware component

between the CPU and peripherals to supervise and synchronize all input and output

transfers. These components are called interface units because they interface between
the processor bus and the peripheral device,

Functions of /O Interface

_An /O interface is bridge between the processor and [/O devices. It controls the data
exchange between the external devices and the main memory; or external devices and
processor registers. Therefore, an I/0 interface provides an interface internal to the
computer which connects it to the processor and main memory and an interface
external to the computer connecting it to external device or peripheral. The /O
interface should not only communicate the information from processor to main 1/0
device, but it should also coordinate these two. In addition, since there are speed
differences between processor and 1/0 devices, the 1/0 interface should have facilities
)ike buffer and error detection mechanism. Therefore, the major functions or
requirements of an 1/O interface are:

t
[t should be able to provide control and timing signals

The need of [/O from various I/O devices by the processor is quite unpredictable. In
fact it depends on I/O needs of particular programs and normally does not follow any
pattern. Since. the I/O interface also shares system bus and memory for data
input/output. control and timing are needed to coordinate the flow of data from/to
external devices to/from processor or memory. For example, the control of the transfer
of data from an external device to the processor might involve the following steps:

1. The processor enquires from the 1/O interface to check the status of the attached
device. The status can be busy, ready or out of order.
2, The [/O interface returns the device status.

If the device is operational and ready to transmit, the processor requests the
transfer of data by means of a command, which is a binary signal, to the I/O
interface.

4. The [/O interface obtains a unit of data (e.g., 8 or 16 bits) from the external
device.

5. The data is transferred from the 1/O interface to the processor.

It should communicate with the processor

The above example clearly specifies the need of communication between the
processor and 1/O interface. This communication involves the following steps:

45

Basic Computer
Organisation

46

1. Commands such as READ SECTOR, WRITE SECTOR, SEEK track number
and SCAN record-id sent over the control bus.

2. Data that are exchanged between the processor and 1/Q interface sent over the
data bus.

3. Status: As peripherals are so slow, it is important to know the status of the 1/0
interface. The status signals are BUSY or READY or in an error condition from
I/O interface.

4. Address recognition as each word of memory has an address, so does each I/O
device. Thus an I/Q interface must recognize one unique address for each
peripheral it controls.

It should communicate with the [/O device

Communication between 1/0 interface and 1/O device is needed to complete the /0
operation, This communication involves commands, status or data.

It should have a provision for data buffering

Data buffering is quite useful for the purpose of smoothing out the gaps in speed of
processor and the I/O devices. The data buffers are registers, which hold the [/O
information temporarily. The 1/O is performed in short bursts in which data are stored
in buffer area while the device can take its own time to accept them. In I/Q device to
processor transfer, data are first transferred to the buffer and then passed on to the
processor from these buffer registers. Thus, the 1/0 operation does not tie up the bus

-for slower I/0 devices.

Error detection mechanism should be in-built

The error detection mechanism may involve checking the mechanical as well as data
communication etrors. These errors should be reported to the processor. The examples
of the kind of mechanical errors that can occur in devices are paper jam in printer,
mechanical failure, electrical failure etc. The data communication errors may be
checked by using parity bit.

2.4 THE DEVICE CONTROLLERS AND ITS
STRUCTURE

All the components of the computer communicate with the processor through the
system bus. That means the I/O devices need to be attached to the system bus.
However, /0 devices are not connected directly to the computer’s system bus. Instead
they are connected to an intermediate electronic device interface called a device
controller, which in turn is connected to the system bus. Hence a device controller is
an interface between an 1/0 device and the system bus. On one side, it knows how to
communicate with the I/0 device connected to it, and on the other it knows how to
communicate with the computer’s CPU or processor and memory through the system
bus.

2.4.1 Device Controller

A device controller need not necessarily control a single device. It can usually control
multiple I/O devices. It comes in the form of an electronic circuit board that plugs
directly into the system bus, and there is a cable from the controller to each device it
controls. The cables coming out of the controller are usually terminated at the back
panel of the main computer box in the form of connectors known as ports.

The Figure 2 below illustrates how 1/O devices are connected to a computer system
through device controllers. Please note the following points in the diagram:

The Input / Output

Each I/O device is linked through a hardware interface called 1/O Port. System

Single and Multi-port device controls single or multi-devices.

The communication between 1/0 controller and Memory is through bus only in
case of Direct Memory Access (DMA), whereas the path passes through the CPU
for such communication in case of non-DMA.

CPU Memory

"
/ I . - ! \ S b
g Path not | ystem bus

I L imolvingDMA__ | | _ DMApath,

) B)

1 v

L

[

|

Device Device
- Controller . Controller
(Multi-port) (Single-port)
[voPor | [_voPon |
/0 O /0
Device . Device Device

Figure 2: Connecting /O Devices using Device Controller

IJsing device controllers for connecting I/O devices to a computer system instead of
connecting them directly to the system bus has the following advantages:

A device controller can be shared among multiple /O devices allowing many [/O
devices to be connected to the system.

1/O devices can be easily upgraded or changed without any change in the
computer system.

1/0 devices of manufacturers other than the computer manufacturer can be easily
plugged in to the computer system. This provides more ﬂexnblhty to the users in
buying 1/0 devices of their choice,

2.4.2 Structure of an I/O Interface

Due to the complexity and the number of external devices that the /O mierface
control, there is no standard structure of I/O interface. Let us give a general structure
to an I/O interfaces;

There is a need of I/Q logic, which should interpret and execute dialogue
between the processor and 1/0 interface. Therefore, there need to be control lines
between processors and 1/0 interface.

The data line connecting 1/0 interface to the system bus must exist. Thesé lines
serve the purpose of data transfer.

Data registers may act as buffer between processor and I/0 interface.

The 1/O interface contains logic specific to the interface with each device that it
controls, '

47

48

Basic Computer
Organisation

Interface with " Interface with
System Bus I/O device
External —#= Data
a1 e i Device
Data Lines 1 Data Register Intetface 1P Stans
Logic —» Contro!

Control Lines

—p Status Register Lj
—p |

0| External

-
Logic I PoE
Address Lines I > .-

-
-

2

Figure 3: The General Structure of an 1/O

Figure 3 above is a typical diagram of an 1/0 interface which in addition to all the
registers as defined above has status/control registers which are used to pass on the
status information or the control information.

2.5 DFVICE DRIVERS

A device driver is software interface which manages the communication with, and the
control of, a specific I/0 device, or type of device. It is the task of the device driver to
convert the logical requests from the user into specific commands directed to the
device itself. For example, a user request to write a record to a floppy disk would be
realised within the device driver as a series of actions, such as checking for the
presence of a disk in the drive, locating the file via the disk directory, positioning the
heads, etc.

Device Drivers in UNIX, MS-DOS and Windows System

Although device drivers are in effect add-on modules, they are nevertheless
considered to be part of the system since they are closely integrated with the Input/
Output Control System, which deals with 1/0 related system calls.

In UNIX the device drivers are usually linked onto the object code of the kernel (the
core of the operating system). This means that when a new device is to be used, which
was not included in the original construction of the operating system, the UNIX kernel
has to be re-linked with the new device driver object code. This technique has the
advantages of run-time efficiency and simplicity, but the disadvantage is that the
addition of a new device requires regeneration of the kernel. In UNIX, each entry in
the /dev directory is associated with a device driver which manages the
communication with the related device. A list of some device names is as shown
below:

Device name Description The Input / Output
Systemn

/dev/console system console

/dev/tty01 user terminal 1

/dev/tty02 user terminal 2

dev/lp line printer

dev/dsk/f03h 1.44 MB floppy drive

'n MS-DOS, device drivers are installed and loaded dynamically, i.e., they are loaded
into memory when the computer is started or re-booted and accessed by the operating
system as required. The technique has the advantage that it makes addition of a new
driver much simpler, so that it could be done by relatively unskilled users. The
additional merit is that only those drivers which are actually required need to be
loaded into the main memory. The device drivers to be loaded are defined in a Special
file called CONFIG.SYS, which must reside in the root directory. This file is
automatically read by MS-DOS at start-up of the system, and its contents acted upon.
A list of some device name is as shown below:

Device name Description
con: keyboard/screen
coml: serial portl
com2: serial port2
Iptl: printer portl

A: first disk drive
C: hard disk drive

In the Windows system, device drivers are implemented as dynamic link libraries
(DLLs). This technique has the advantages that DLLs contains shareable code which
means that only one copy of the code needs to be loaded into memory. Secondly, a
driver for a new device can be implemented by a software or hardware vendor without
the need to modify or affect the Windows code, and lastly a range of optional drivers
can be made available and configured for particular devices.

In the Windows system, the idea of Plug and Play device installation is required to
add a new device such as a CD drive, etc. The objective is to make this process largely
automatic; the device would be attached and the driver software loaded. Thereafter,
the installation would be automatic; the settings would be chosen to suit the host
computer configuration.

Check Your Progress 1

1. What are the functions of an I/O interface?

..
B A e N L R R N L R R R e s

..

2. State True or False: T/F

(a) Coml isa UNIX port.

(b) The buffering is done by data register.

(c) Device controller is shareable among devices.

(d) I/0 system is basically needed for better system efficiency

(e) Device drives can be provided using software libraries.

(f) The devices are normally connected directly to the system bus.

(g) Data buffering is helpful for smoothing out the speed differences
between CPU and input/output devices.

(h) Input/ output module is needed only for slower I/O devices

noopuopd

49

asic Computer 3. What is a device driver? Differentiate between device controller and device
Organisation drivers.

2.6 INPUT-OUTPUT TECHNIQUES

After going through the details of the device interfaces, the next point to be discussed
is how the intetface may be used to support input/output.from devices. Binary
information received from an external device is usually stored in memory for later
processing. Information transferred from the central computer into an external device
originates in the memory unit. Data transfer between the central computer and 1/0
‘devices may be handled in a variety of modes. Three techniques are possible for [/O
opgration. These are: ‘

» Programmed input/output
e Interrupt driven input/output
¢ Direct memory accesd

Figure 4 gives an overview of these three techniques

Interrupt 1/O interface to/from
Required memory transfer (refer
‘ Figure 2)
Pfdgfamme,d 170 No Through CPU
Interrupt-driven I/0 Yes Through CPU
DMA 1T Yes Direct to Memory

Flgure 4: Overview of the three Input/ Output

In programmed 1/0, the 1/O operations are completely controlled by the processor.
The processor executes a ptogram that initiates, directs and terminate an /O
operation. It requires a little special I/O hardware, but is quite time consuming for the
processor since the processor has to wait for slower 1/0 operations to complete.

With interrupt driven 1/0, when the interface determines that the device is ready for
data transfer, it generates an interrupt request to the computer. Upon detecting the
external interrupt signal, the processor stops the task it is processing, branches to a
service program to process the 1/O transfer, and then returns to the task it was
originally performing which results in the waiting time by the processor being
reduced.

With both programmed and interrupt-driven 1/0, the processor is responsible for -
_extracting data from the main memory for output and storing data in the main memory
during input. What about having an alternative where I/O device may directly store
data or retrieve data from memory? This alternative is known as direct memory access
(DMA). In this mode, the 1/O interface and main memory exchange data directly,
without the involvement of processor.

50

The Input / Output

Figure 5: Three techniques of /O

2.6.1 Programmed Input /Qutput

Programmed input/output is a useful I/O method for computers where hardware costs
need ta be minimised. The input or output operation in such cases may involve:

a) Transfer of data from I/O device to the processor registers.

b) Transfer of data from processor registers to memory.

With the programmed 1/Q nrethod, the responsibility of the processor is to constantly
check the status of the 1/O device to check whether it is free or it has finished
inputting the data, Thus, this method is very time consuming where the processor
wastes a lot of time in checking and verifying the status of an 1/0 device. Figure 5(a)
gives an example of the use of programmed /O to read in a block of data from a
peripheral device into memory,

System
_ | Josue read lssueread | CPUVO lssue read - |-CPU=> DMA

command to CPU"’ Qo com.mand to _—— Do ather commoacnd to - Do other

1/O interface 1/Q interface processing VO interface |~ processing

Read status Read status 4~ — Interrupt Read SIBtUS |egm = = - Interrupt
Not reafiy of 1/0 1/O—> CPU of 1K} /O ~>CPU of DMA
(:ry again Interface interfacc interface DMA=> CPU

Next instruction
Cheek llgssue Issue error
Btatus n'.o.r - Condition
Condition
Ready
Read word Read word
from /O 1/O—> CPU from I/O /O—» CPY
interface Interface
Write word Write word -
Into memory | CPU—> Memory into memory | CPUT™” Memory
Neo No
o Completed? Completed? 2
Next instruction Next instruction

(a) Programmed /O (b) Interrupt Driven 1/0 () DMA

51

Basic Computer

Organisation

52

READ line
WRITE line

1/0 Commands

There are four types of /0 commands that an I/O interface may receive when it is
addressed by a processor:

e Control: These commands are device specific and are used to provide specific
instructions to the device, e.g. a magnetic tape requiring rewinding and moving
forward by a block.

e Test: This command checks the status such as if a device is ready or not or is in
error condition.

e Read: This command is useful for input of data from input device.

Write: this command is used for output of data to output device.

1/0 Instructions:

An I/O instruction is stored in the memory of the computer and is fetched and
executed by the processor producing an I/O-related command for the 1/0 interface.
With programmed 1/O, there is a close correspondence between the 1/O-related
instructions and the 1/0 commands that the processor issues to an I/O interface to
execute the instructions.

In systems with programmed 1/0, the /O interface, the main memory and the
srocessors normally share the system bus. Thus, each I/0 interface should interpret
_uc address lines to determine if the command is for itself. There are two methods for
doing so. These are called memory-mapped I/O and isolated 1/0.

With memory-mapped /O, there is a single address space for memory locations and
I/O devices. The processor treats the status and data registers of I/O interface as
memory locations and uses the same machine instructions to access both memory and
I/0 devices. For a memory-mapped 1/O only a single read and a single write line are
needed for memory or I/0 interface read or write operations. These lines are activated
by the processor for either memory access or 'O device access. Figure 6 shows the
memory-mapped /0 system structure.

N
— 1 T Data buis
T —— Address bus

r' — —e

Main . - - 1/0 /0

Memory crU- Interface 1 Interface 2
1/O Devices
1/0 Devices

Figure 6: Structure of Memory Mapped I/O

With isolated 1/0, there are separate control lines for both memory and 1/O device Vhe Input/ Output
read or write operations, Thus a memory reference instriiction does not affect an /O System
device, In isolated [/0, the 1/0 devices and memory are addressed separately: hence

~ separate input/output instructions are needed which cause data transfer between

addressed 1/0 interface and processor. Figure 7 shows the structure of isolated 1/0.

f —9- - Data bus
f Address bus
Memory 1/0 '
Read Line Read
Memory

t I Write . 0

Linej . Write v
Main . 1/O i 1/0
Memory CPU Interfacel Interface2 |***

I/0 Devices
1/0 Devices

¥

_Figure 7: Structure of Isolated 1/O

2.6.2 Interrupt-Driven Input/Output

The problem with programmed 1/O is that the processor has to wait a long time for the
1/0 interface to see whether a device is free or wait till the completion of 1/0. The
result is that the performance of the processor goes down tremendously. What is the
solution? What about the processor going back to do other useful work without
waiting for the 1/0 device to complete or get freed up? But how will the processor be
intimated about the completion of 1/O or a device is ready for I/O? A well-designed
mechanism was conceived for this, which is referred to as interrupt-driven VO. In this
mechanism, provision of interruption of processor work, once the device has finished
the 1/0 or when it is ready for the 1/0, has been provided.

The-interrupt-driven /0O mechanism for transferring a block of data is shown in Figure
3(b). Please note that after issuing a read command (for input) the CPU goes off to do
other useful work while 1/0 interface proceeds to read data from the associated

device, On the completion of an instruction cycle, the CPU checks for interrupts
(which will occur when data is in data register of 1/0 interface and it now needs
CPU"s attention), Now CPU saves the important register and processor status of the
executing program in a stack and requests the 1/O device to provide its data, which is
placed on the data bus by the 1/0 device. After taking the required action with the
data, the CPU can go back to the program it was executing béfore the interrupt.

2.6.3 Interrupt-Processing

The occurrence of an interrupt fires a numbers of events, both in the processor
hardware and software. Figure 8 shows a sequence.

Basic Computer
Organisation

- Hardware
A Software
r ™ A
r N\
Device controller/ +
system hardware

issues an interrupt
Save remaining

T process state
information

Processor completes I
execution of current .
mstruction

. \
Processes interrupt

. servicing program
J (ISR)
h

Processor
acknowledges
interrupt

Restores process
l state information of

old process

Processor saves i
PSW and PC on

the stack

Restores old PSW

~ l and PC

Processor loads PC
with address of ISR

Figure 8: Interrup*—Processing Sequence

When an I/0 device completes an [/O operation, the following sequence of hardware
events occurs:

1. The device issues an interrupt signal to the processor.

2. The processor finishes execution of the current instruction before responding to
the interrupt. ‘

3. The processor tests for the interrupts and sends an acknowledgement signal to the
‘device that issued the interrupt.

4. The minimum information required to be stored for the task being currently
executed, before the CPU starts executing the interrupt routine (using its
registers) are:

(a) The status of the processor, which'is contained in the register called program
status word (PSW),\and

(b) The location of the next instruction to be executed, of the currently executing
program, which is contained in the program counter (PC).

Th e processor now loads the PC with the entry location of the interrupt-handling The Input / Output
program that will respond to this interrupting condition. Once the PC has been Systemn
loaded, the processor proceeds to execute the next instruction, that is the next

instruction cycle, which begins with an instruction fetch. Because the instruction

fetch is determined by the contents of the PC, the result is that control is

transferred to the interrupt-handler program. The execution results in the

following operations:

The PC & PSW relating to the interrupted program have already been saved on
the system stack. In addition, the contents of the processor registers are also
needed to be saved on the stack that are used by the called Interrupt Servicing
Routine because these registers may be modified by the interrupt-handler. Figure
9(a) shows a simple example. Here a user program is interrupted after the
instruction at location N. The contents of all of the registers plus the address of
the next instruction (N+1) are pushed on to the stack.

The interrupt handler next processes the interrupt. This includes determining of
the event that caused the interrupt and also the status information relating to the
I/O operation.

When interrupt processing is complete, the saved register values are retrieved
from the stack and restored to the registers, which are shown in Figure 9(b).

‘The final step is to restore the values of PSW and PC from the stack. As a result,
the instruction to be executed will be from the previously interrupted program.

Address of
ISR say (A)

Stack Stack

to
PC contents P N+ |
stored here Control

l . stack .
Pl . s
T

Program Program
counter (PC) counter

[[

Int t Interrupt ;{
- nterrup ‘ -

A . 1 A : : ‘
Start service Start service L

routine General routing General
(ISR) register . register

A+ | A+ L [Retum ——
Stack Stack
pointer pointer

J

Processor Proccssor

User’s N User's

N+1
program N+1 program

-
—

Main Main

i memory memory

(a) Interrupted occurs while instruction (b) Return from interrupt
at location N is being executed

55
Figure 9: Interrupt Handling

Basic Computer
Organisation

56

Thus, interrupt handling involves interruption of the currently executing program,
execution of interrupt servicing program and restart of interrupted program from the
point of interruption.

Design issues: Two design issues arise in implementing interrupt-driven 1/0: -

1) How does the processor determine which device issued the interrupt?

2) If multiple interrupts have occusred, how does the processor decide which one to
be processed first?

To solve these problems, four general categorles of techniques are in common use:”

e Multiple Interrupt Lines: The simplest solutlon to the problems above Is ta
pravide multiple interrupt lines, which will result in immediate recognition of the
interrupting device. Priorities can be assigned to various interrupts and the
Interrupt with the highest priority should be selected for service in case a multiple
interrupt occurs, But providing multiple interrupt lines is an impractical approach
because only a few lines of the system bus can be devoted for the interrupt.

» Software Poll; In this scheme, on the occurrence of an interrupt, the progessor
Jjumps to an lntcrrupt service program or routing whose job it is to poll (roll call)
each 1/Q interface to determine which 1/0 interface has caused the Interrupt. This
may be achievad by reading the status reglster of the I/Q Interface. Once the
correct interface is identified, the processor branches to a device-service routine
specific to that device. The disadvantage of the software poli is that it is time
consuming.

¢ Daisy chain: Thrs scheme provides a hardware poll. With this technique, an
interrupt acknowledge line Is chained thraugh various interrupt deyices. All VO
interfaces share a common {nterrupt request line, When the processor senses an
interrupt, it sends out an interrupt acknowledgement. This signal passes through
all the I/O devices until it gets to the requesting device. The first device which
has made the interrupt request thus senses the signal and responds by putting ina
word which is normally an address of interrupt servicing program or a unique -
identifier on the data lines. This word is also referred to as interrupt vector. This
address or identifier in turn is used for selecting an appropriate interrupt-
servicing program. The daisy chaining has an in-built priority scheme, which is
determined by the sequence of devices on interrupt acknowledge line.

Bus arbitration: In this scheme, the I/0 interface first needs to controi the bus
and only after that it can request for an interrupt. In this scheme, since only one
of the interfaces can control the bus, therefore only one request can be made at a
time. The interrupt request is acknowledged by the CPU on response of which-
1/O interface piaces the interrupt vector on the data lines. An interrupt vector
normaily contains the address of the interrupt serving program.

An example of an ihterrupt vectarcan be a personal computer, where there are severai
IRQs (Interrupt request) for a specific type of interrupt.

2.6.4 DMA (Direct Memory Access)

In both mterrupt-drlven and programmed 1/0, the precessor is busy with executing
input/output instructions and the I/O transfer rate is limited by the speed with which
the processor can test and service a device. What about a techmque thay requires

" minimal intervention of the CPU for 1nput/output‘7 These two types of drawbacks can

be overcome with a more efficient techmque known as DMA, which adts as if it has
taken over control from the processor. ‘Hence, the question is: why do we use DMA
interface? It is used primarily when a large amount of data is to be transferred from

‘the I/O device to the Memory.

DMA Function

Although the CPU intervention in DMA is minimised, yet it must use the path
between interfaces that is the system bus. Thus, DMA involves an additional interface
on the system bus. A technique called cycle stealing allows the DMA interface to
transfer one data word at a time, after which it must return control of the bus to the
processor. The processor merely delays its operation for one memory cycle to allow
the directly memory 1/0O transfer to “steal” one memory cycle. When an 1/0 is
requested, the processor issues a command to the DMA interface by sending to the
DMA interface the following information (Figure 10): ‘

e Which operations (read or write) to be performed, using the read or write control
lines.
e The address of I/0 devices, which is to be used, communicated on the data lines.

e The starting location on the memory where the information will be read or
written to be communicated on the data lines and is stored by the DMA interface
in its address register.

e The number of words to be read or written is communicated on the data lines and
is stored in the data count register.

Registers

_J Data.
(count

Multiplexed ' Data
data lines > Register
N Address
Address lincs <€—————p| register
‘DMA request <—
Signals<x PMA acknowledge _J o |
Interrupt -— ont'ro
logic
Read -
Write !
S

Figure 10: DMA block diagram

The DMA interface transfers the entire block of data, one word at a time, directly to or
from memory, without going through the processor. When the transfer is complete,
the DMA interface sends an interrupt signal to the processor. Thus, in DMA the
processor involvement can be restricted at the beginning and end of the transfer,
which can be shown as in the figure above. But the question is when should the DMA
take control of the bus? .

For this we will recall the phenomenon of execution of an instruction by the
processor. Figure 11 below shows the five cycles for an instruction execution. The
Figure also shows the five points where a DMA request can be responded to and a
point where the interrupt request can be responded to. Please note that an interrupt
request is acknowledged only at one point of an instruction cycle, and that is at the
interrupt cycle. ‘

The Input / Output
System

57

Basie Camputey
Organisation

Time
m——n>
Instruction cycle
Processor | -Processor | Processor | Processor | Proeessor | Processor
cycle cycle cycle cycle cycle cycle
Fetch Decode Fetch Execute Store Process
instruction | instruction | operand | instruction result interrupt

A

DMA Interrupt
breakpoints breakpoint

Figure 11: DMA and Interrupt Breakpoints

The DMA meshanism can be configured into a varlety of ways. Some possibilities are
shown below in Figure 12(a), in which al] interfaces share the same system bus. The
DMA acts as the supportive processor and can use programmed 1/Q for exchanging
data between memory and 1/0 interface through DMA interface. But once again thls
spoils the basie advantage of DMA not using extra cycles for transferring information
from memory to/from DMA and DMA from/to I/Q interface.

System Bus

lProcessqu [DMAj [/O

to e 1/0 Memory]

(a) Single-bus, detached DMA

@péessﬂ

(b) Single-bus, integrated DMA-1/O

Processor

{c) /O bys

58
Figure 12: DMA Configuration

The Figure 12(b) configuration suggests advantages over the one shown above. In The Taput/ g‘f'ti‘“‘
these systems a path is provided between 1/O interface and DMA interface, which ystem
does not include the system bus. The DMA logic may become part of an I/O interface

and can control one or more I/O interfaces. In an extended concept an 1/0 bus can be

connected to this DMA interface. Such a configuration (shown in Figure 12 (¢)) is

quite flexible and can be extended very easily. In both these configurations, the added

advantage is that the data between /O interface and DMA interface is transferred off

the system bus, thus eliminating the disadvantage we have witnessed for the first

configuration.

Check Your Progress 2

1. Which of the I/0 techniques does not require an Interrupt Signal? Is this
technique useful in Multiprogramming Operating Systems? Give reason.

..

...

..

..
...

R R R R TN R R L R R R R R R T R P R

4, State True or False:
a) * Daisy chain provides software poll. ‘ :]

b) 170 mapped 10 scheme requires no additional lines from CPU to /O device
except for the system bus. D

¢) Most of the 1/0 processors have their own memory while a DMA module
does not have its own memory except for a register or a simple buffer area.

]

d) The advantage of interrupt driven I/O over programmed 1/O is that in the
first the interrupt mechanisms free 1/O devices quickly. |::|

2.7 INPUT-OUTPUT PROCESSORS

Before discussing I/0 processors, let us briefly recapitulate the develoﬁinent in the
area of input/output functions. These can be summarised as:

1. The CPU directly controls a peripheral device.

2. Addition of I/O controller or /O interface: The CPU uses programmed 1/0
without interrupts. CPU was separated from the details of external I/0O interfaces.

3. Contained use of I/O controllers but with interrupts: The CPU need not spend
time waiting for an 1/O operation to be performed, increasing efficiency.

4. Direct access of I/O interface to the memory via DMA: CPU involvement
reduced to at the beginning and at the end of DMA operation.

59

Basic Computer 5. The CPU directs the I/0 processors to execute an [/O program in memory. The

Organisation /O processor fetches and executes these instructions without CPU intervention.
This allows the CPU to specify a sequence of [/O activities and to be interrupted
only when the entire sequence has been performed. With this architecture, a large
set of I/0 devices can be controlled, with minimum CPU involvement.

With the last two steps (4 and 5), a major change occurs with the introduction of the
concept of an /O interface capable of executing a program. For steps 5, the [/O
interface is often referred to as an I/O channel and I/O processor.
Characteristics of /0 Channels
The [/O channel represents’an extension of the DMA concept. An I/O channel has the
“ability to execute I/O instfuctions, which gives complete control over the VO
operation. With such deviges, the CPU does not execute 1/O instructions. Such
instructions are stored in the main memory to be executed by a special-purpose
processor in the I/O channel itself. Thus, the CPU initiates an I/O transfer by
instructing the I/0 channel to execute a program in memory. Two types of [/O
channels are commonly used which can be seen in Figure 13 (a and b).
Data and
address
channel to
main memory
(——— Selector
chanpel
—P .
Control signal /0 o
path to CPU Controller Controller
Data and
address (a) Selector Channel
channel to
main memory
(CEEma— Multiplexer
h |
cnanne
Control signal
th to CPU :
patifo 10
Controller
1/0
Controller
170
Controller
10
Controller
(b) Multiplexer Channel

60

Figure 13: I/O Channel Structures

A selector channel controls multiple high-speed devices and, at any one time, is
dedicated to the transfer of data with one of those devices. Each device is handled by a
controller or I/O interface. Thus the 1/O channel serves in place of the CPU in
controlling these /0 controllers.

A multiplexer channel can handle /O with multiple devices at the same time. If the
devices are slow then byte multiplexer is used. Let us explain this with an example. If
we have three slow devices which need to send individual bytes as:

X1 X2 X3 X4 X5......
Y1 Y2 Y3 Y4 YS5......
Z1 72 Z3 Z4 75......

Then on a byte multiplexer channel they may send the bytes as X1 Y1 Z1 X2 Y2
22 X3 Y3 Z3...... For high-speed devices, blocks of data from several devices are
interleaved, These devices are called block multiplexer.

2.8 EXTERNAL COMMUNICATION
INTERFACES

The external interface is the interface between the 1/0 interface and the peripheral
devices. This interface can be characterised into two main categories: (a) parallel
interface and (b) serial interface.

In parallel interface multiple bits can be transferred simultaneously. The parallel
interface is normally used for high-speed peripherals such as tapes and disks. The
dialogues that take place across the interface include the exchange of control
information and data.

In serial interface only one line is used to transmit data, therefore only one bit is
transferred at a time. Serial printers are used for serial printers and terminals. With a
new generation of high-speed serial interfaces, parallel interfaces are becoming less
common,

In both cases, the [/O interface must engage in a dialogue with the peripheral. The
dialogue for a read or write operation is as follows:

e A control signal is sent by I/O interface to the peripheral requesting the
permission to send (for write) or receive (for read) data.
e The peripheral acknowledges the request.

® The data are transferred from 1/O interface to peripheral (for write) or from
peripheral to 1/0 interface (for read).

¢ The peripheral acknowledges receipt of the data.

The connection between an I/O interface in a computer system and external devices
can be either point-to-point or multipoint. A point-to-point interface provides a
dedicated line between the 1/O interface and the external device. For example
keyboard, printer and external modems are point-to-point links. The most common
serial interfaces are RS-232C and EIA-232,

A multipoint external interface used o support external mass storage devices (such as
disk and tape drives) and multimedia devices (such as CD-ROM, video, audio).

Two important examples of external interfaces are FireWire and InfiniBand,

The Input / Output
System

6"

62

Basic Computer
Organisation

Check Your Progress 3

1. What is the need of I/O channels?

erirerarayraraeny treanarerrregsny tresesnan P R R R N R R I RIS trevae
R N N AR R RN Y N N N NN R N N N NN R RN R PR Brvreeranes .
fravesarerern e R N N R) Fregernrarey PrTesssarsrasvarr Rt eney .

By srusuesranr s et ptartarentnese st antaut et or D R R R R T T

2. What is the need of external Communication Interfaces?

LR L R N R R AR R RN TR RN RN trevrt

LR AR AR AR A R R R R R A A R N RN R AN N AN R A AR KN KRR]

2 9 SUMMARY

This unit Is totally devoted to the /O of computer system. In this unit we have
discussed the identification of I/O interface, deseription of /O techniques such as
programmed 1/Q, interrupt-driven [/O and direct memory access. These techniques are
useful for increasing the efficiency of the input-output transfer process. The concepts
of device drivers for all types of operating systems and device controliers are also
discussed with this unit. We have also defined an input/output processor, the external
communication interﬁxces such as serial and parallel interfaces and interrupt
processing. The I/Q processors are the most powerful 1/Q interfaces that can execute
the complete I/0 instructions. You can always refer to further reading for detall
design.

2.10 SOLUTIONS /ANSWERS

Check Your Progress 1

1. The functions of /0 interfaces are to-provide:
e Timing and control signal.
e Communication with processor and I/O devices.

e Support for smoothing the speed gap between CPU and Memory using
buffering.

e Error detection.
2. (a)False (b) True (c) True (d) True (e) True (f) False (g) True (h) False

3. A device driver is a software module which manages the communication with,
and the control of, a specific I/O devige, or type of device. The difference
between device driver and controller are:
¢ One device controller can control many devices, whereas drivers are deviee

specific.

¢ Device controllers are a more intelligent hardware-spfiware combination than
device drivers.

e 1/O controllers allow different types and upgradeability of devices whereas
device driver is devige specifis.

Check Your Progress 2

1.

The Input/ Qutput
fystem

The technique Programmed /O does not require an Interrupt. It is very inefficient
for Multiprogramming environment as the processor is busy waiting for the I/0
to complete, while this time would have been used for instruction execution of
other programs.

The techniques for recognition of interrupting device/conditions can be:

2.
. Multiple Interrupt Lines: Having separate line for a device, thus direct
recognition.
e Software Poll: A software driven roll call to find from devices whether it has
‘made an interrupt request.
¢ Daisy Chain: A hardware driven passing the buck type signal that moves
through the devices connected serially. The device on receipt of slgnal on his
turn, if has interrupt informs its address.
¢ Bus Arbitration: In this scheme, the 1/Q interface requests for control of the
Bus. This is a common process when 1/Q processors are used.
3. The functions of I/Q interface are:
¢ Control and timing signals
¢ CPU communications
o 1/0 device communication
¢ Data buffering
o In-built error-detection mechanism.
DMA is an /O technique that minimises the CPU interventlon at the beginning
and end of a time consuming I/O. One, commonplace where DMA is used is
when [/O is required from a Hard Disk, since one single I/O request requires g
block of data transfer which on the average may take a few milliseconds. Thus,
DMA will free CPU to do other useful tasks while I/O is going on.
4, a)False
b) False
¢) True
d) False
Check Your Progress 3
1. The I/O channels were popular in older mainframes, which included many 1/0
devices and /O requests from many users. The 1/O channel takes control of all
I/O instructions from the main processor and controls the /O requests. It is
mainly needed in situations having many 1/O devices, which may be shared
among multiple users.
2. The external interfaces are the standard interfaces that are used to connect third

party or other external devices. The standardization in this area is a must.

63

