

Structures, Pointers
and File Handling UNIT 12 FILES

Structure

12.0 Introduction
12.1 Objectives
12.2 File Handling in C Using File Pointers
 12.2.1 Open a file using the function fopen()
 12.2.2 Close a file using the function fclose()

12.3 Input and Output using file pointers
 12.3.1 Character Input and Output in Files

12.3.2 String Input / Output Functions
12.3.3 Formatted Input / Output Functions
12.3.4 Block Input / Output Functions

12.4 Sequential Vs Random Access Files
12.5 Positioning the File Pointer
12.6 The Unbufferred I/O - The UNIX like File Routines
12.7 Summary
12.8 Solutions / Answers
12.9 Further Readings

12.0 INTRODUCTION

The examples we have seen so far in the previous units deal with standard input and
output. When data is stored using variables, the data is lost when the program exits
unless something is done to save it. This unit discusses methods of working with files,
and a data structure to store data. C views file simply as a sequential stream of bytes.
Each file ends either with an end-of-file marker or at a specified byte number recorded
in a system maintained, administrative data structure. C supports two types of files
called binary files and text files.

The difference between these two files is in terms of storage. In text files, everything
is stored in terms of text i.e. even if we store an integer 54; it will be stored as a 3-byte
string - “54\0”. In a text file certain character translations may occur. For example a
newline(\n) character may be converted to a carriage return, linefeed pair. This is what
Turbo C does. Therefore, there may not be one to one relationship between the
characters that are read or written and those in the external device. A binary file
contains data that was written in the same format used to store internally in main
memory.

For example, the integer value 1245 will be stored in 2 bytes depending on the
machine while it will require 5 bytes in a text file. The fact that a numeric value is in a
standard length makes binary files easier to handle. No special string to numeric
conversions is necessary.

The disk I/O in C is accomplished through the use of library functions. The ANSI
standard, which is followed by TURBO C, defines one complete set of I/O functions.
But since originally C was written for the UNIX operating system, UNIX standard
defines a second system of routines that handles I/O operations. The first method,
defined by both standards, is called a buffered file system. The second is the
unbuffered file system.

In this unit, we will first discuss buffered file functions and then the unbuffered file
functions in the following sections.

58

Files

12.1 OBJECTIVES

After going through this unit you will be able to:

• define the concept of file pointer and file storage in C;
• create text and binary files in C;
• read and write from text and binary files;
• deal with large set of Data such as File of Records; and
• perform operations on files such as count number of words in a file, search a word

in a file, compare two files etc.

12.2 FILE HANDLING IN C USING FILE POINTERS

As already mentioned in the above section, a sequential stream of bytes ending with
an end-of-file marker is what is called a file. When the file is opened the stream is
associated with the file. By default, three files and their streams are automatically
opened when program execution begins - the standard input, standard output, and
the standard error. Streams provide communication channels between files and
programs.

For example, the standard input stream enables a program to read data from the
keyboard, and the standard output stream enables to write data on the screen.
Opening a file returns a pointer to a FILE structure (defined in <stdio.h>) that
contains information, such as size, current file pointer position, type of file etc., to
perform operations on the file. This structure also contains an integer called a file
descriptor which is an index into the table maintained by the operating system namely,
the open file table. Each element of this table contains a block called file control block
(FCB) used by the operating system to administer a particular file.

The standard input, standard output and the standard error are manipulated using file
pointers stdin, stdout and stderr. The set of functions which we are now going to
discuss come under the category of buffered file system. This file system is referred to
as buffered because, the routines maintain all the disk buffers required for reading /
writing automatically.

To access any file, we need to declare a pointer to FILE structure and then associate it
with the particular file. This pointer is referred as a file pointer and it is declared as
follows:

FILE *fp;

12.2.1 Open A File Using The Function fopen()

Once a file pointer variables has been declared, the next step is to open a file. The
fopen() function opens a stream for use and links a file with that stream. This function
returns a file pointer, described in the previous section. The syntax is as follows:

FILE *fopen(char *filename,*mode);

where mode is a string, containing the desired open status. The filename must be a
string of characters that provide a valid file name for the operating system and may
include a path specification. The legal mode strings are shown below in the table 12.1:

59

Structures, Pointers
and File Handling

 Table 12.1: Legal values to the fopen() mode parameter

 MODE MEANING

“r” / “rt” opens a text file for read only access
“w” / “wt” creates a text file for write only access
“a” / “at” text file for appending to a file
“r+t” open a text file for read and write access
“w+t” creates a text file for read and write access,
“a+t” opens or creates a text file and read access
“rb” opens a binary file for read only access
“wb” create a binary file for write only access
“ab” binary file for appending to a file
“r+b” opens a binary or read and write access
“w+b” creates a binary or read and write access,
“a+b” open or binary file and read access

The following code fragment explains how to open a file for reading.

Code Fragment 1

#include <stdio.h>

main ()
 {

 FILE *fp;
 if ((fp=fopen(“file1.dat”, “r”))==NULL)
 {
 printf(“FILE DOES NOT EXIST\n”);
 exit(0);
 }
 }

The value returned by the fopen() function is a file pointer. If any error occurs while
opening the file, the value of this pointer is NULL, a constant declared in <stdio.h>.
Always check for this possibility as shown in the above example.

12.2.2 Close A File Using The Function Fclose()

When the processing of the file is finished, the file should be closed using the fclose()
function, whose syntax is:

int fclose(FILE *fptr);

This function flushes any unwritten data for stream, discards any unread buffered
input, frees any automatically allocated buffer, and then closes the stream. The return
value is 0 if the file is closed successfully or a constant EOF, an end-of file marker, if
an error occurred. This constant is also defined in <stdio.h>. If the function fclose() is
not called explicitly, the operating system normally will close the file when the
program execution terminates.

The following code fragment explains how to close a file.

60

Files

Code Fragment 2

include <stdio.h>
main ()
{
 FILE *fp;
 if ((fp=fopen(“file1.dat”, “r”))==NULL)
 {
 printf(“FILE DOES NOT EXIST\n”);
 exit(0);
 }
……………..
……………..
……………..
…………….
/* close the file */
fclose(fp);
}

Once the file is closed, it cannot be used further. If required it can be opened in same
or another mode.

Check Your Progress 1

1. How does fopen() function links a file to a stream?

…………………………………………………………………………………………

…………………………………………………………………………………………

……………………………………………………………………………………..….

2. Differentiate between text files and binary files.

…………………………………………………………………………………………

…………………………………………………………………………………………

………………………………………………………………………………………..

3. What is EOF and what is its value?

…………………………………………………………………………………………

…………………………………………………………………………………………

……………………………………………………………………………………..….

12.3 INPUT AND OUTPUT USING FILE POINTERS

After opening the file, the next thing needed is the way to read or write the file. There
are several functions and macros defined in <stdio.h> header file for reading and
writing the file. These functions can be categorized according to the form and type of
data read or written on to a file. These functions are classified as:

• Character input/output functions
• String input/output functions
• Formatted input/output functions

61

• Block input/output functions.

Structures, Pointers
and File Handling 12.3.1 Character Input and Output in Files

ANSI C provides a set of functions for reading and writing character by character or
one byte at a time. These functions are defined in the standard library. They are listed
and described below:

• getc()
• putc()

getc() is used to read a character from a file and putc() is used to write a character to
a file. Their syntax is as follows:

int putc(int ch, FILE *stream);
int getc(FILE *stream);

The file pointer indicates the file to read from or write to. The character ch is formally
called an integer in putc() function but only the low order byte is used. On success
putc() returns a character(in integer form) written or EOF on failure. Similarly getc()
returns an integer but only the low order byte is used. It returns EOF when end-of-file
is reached. getc() and putc() are defined in <stdio.h> as macros not functions.

fgetc() and fputc()

Apart from the above two macros, C also defines equivalent functions to read / write
characters from / to a file. These are:

int fgetc(FILE *stream);
int fputc(int c, FILE *stream);

To check the end of file, C includes the function feof() whose prototype is:

int feof(FILE *fp);

It returns 1 if end of file has been reached or 0 if not. The following code fragment
explains the use of these functions.

Example 12.1

Write a program to copy one file to another.

/*Program to copy one file to another */

 #include <stdio.h>
main()
{
 FILE *fp1;
 FILE *fp2;
 int ch;
 if((fp1=fopen(“f1.dat”,”r”)) == NULL)

 {
 printf(“Error opening input file\n”);
 exit(0);
 }
 if((fp2=fopen(“f2.dat”,”w”)) == NULL)
 {
 printf(“Error opening output file\n”);

62

 exit(0);

Files }

 while (!feof(fp1))
 {
 ch=getc(fp1);
 putc(ch,fp2);
 }
 fclose(fp1);
 fclose(fp2);
}

OUTPUT

If the file ”f1.dat” is not present, then the output would be:
 Error opening input file
If the disk is full, then the output would be:
 Error opening output file

If there is no error, then “f2.dat” would contain whatever is present in “f1.dat” after
the execution of the program, if “f2.dat” was not empty earlier, then its contents
would be overwritten.

12.3.2 String Input/Output Functions

If we want to read a whole line in the file then each time we will need to call character
input function, instead C provides some string input/output functions with the help of
which we can read/write a set of characters at one time. These are defined in the
standard library and are discussed below:

• fgets()
• fputs()

These functions are used to read and write strings. Their syntax is:

int fputs(char *str, FILE *stream);
char *fgets(char *str, int num, FILE *stream);

The integer parameter in fgets() is used to indicate that at most num-1 characters are
to be read, terminating at end-of-file or end-of-line. The end-of-line character will be
placed in the string str before the string terminator, if it is read. If end-of-file is
encountered as the first character, EOF is returned, otherwise str is returned. The
fputs() function returns a non-negative number or EOF if unsuccessful.

Example 12.2

Write a program read a file and count the number of lines in the file, assuming that a
line can contain at most 80 characters.

/*Program to read a file and count the number of lines in the file */
#include<stdio.h>
#include<conio.h>
#include<process.h>
void main()
{
 FILE *fp;
 int cnt=0;

63

 char str[80];

Structures, Pointers
and File Handling

/* open a file in read mode */

 if ((fp=fopen("lines.dat","r"))== NULL)
 { printf("File does not exist\n");
 exit(0);
 }
/* read the file till end of file is encountered */
 while(!(feof(fp)))
 { fgets(str,80,fp); /*reads at most 80 characters in str */
 cnt++; /* increment the counter after reading a line */
 }
}/* print the number of lines */
printf(“The number of lines in the file is :%d\n”,cnt);
fclose(fp);
}

OUTPUT

Let us assume that the contents of the file “lines.dat” are as follows:

This is C programming.
I love C programming.

To be a good programmer one should have a good logic. This is a must.
C is a procedural programming language.

After the execution the output would be:

The number of lines in the file is: 4

12.3.3 Formatted Input/Output Functions

If the file contains data in the form of digits, real numbers, characters and strings, then
character input/output functions are not enough as the values would be read in the
form of characters. Also if we want to write data in some specific format to a file, then
it is not possible with the above described functions. Hence C provides a set of
formatted input/output functions. These are defined in standard library and are
discussed below:

fscanf() and fprintf()

These functions are used for formatted input and output. These are identical to scanf()
and printf() except that the first argument is a file pointer that specifies the file to be
read or written, the second argument is the format string. The syntax for these
functions is:
int fscanf(FILE *fp, char *format,. . .);
int fprintf(FILE *fp, char *format,. . .);

Both these functions return an integer indicating the number of bytes actually read or
written.

Example 12.3

Write a program to read formatted data (account number, name and balance) from a
file and print the information of clients with zero balance, in formatted manner on the
screen.

64

Files

/* Program to read formatted data from a file */

#include<stdio.h>
main()
{
 int account;
 char name[30];
 double bal;
 FILE *fp;

 if((fp=fopen("bank.dat","r"))== NULL)
 printf("FILE not present \n");
 else
 do{
 fscanf(fp,"%d%s%lf",&account,name,&bal);
 if(!feof(fp))
 {
 if(bal==0)
 printf("%d %s %lf\n",account,name,bal);
 }
 }while(!feof(fp));
 }

OUTPUT

This program opens a file “bank.dat” in the read mode if it exists, reads the records
and prints the information (account number, name and balance) of the zero balance
records.

Let the file be as follows:

101 nuj 1200
102 Raman 1500
103 Swathi 0
104 Ajay 1600
105 Udit 0

The output would be as follows:

103 Swathi 0
105 Udit 0

12.3.4 Block Input/Output Functions

Block Input / Output functions read/write a block (specific number of bytes from/to a
file. A block can be a record, a set of records or an array. These functions are also
defined in standard library and are described below.

• fread()
• fwrite()

These two functions allow reading and writing of blocks of data. Their syntax is:

 int fread(void *buf, int num_bytes, int count, FILE *fp);

 int fwrite(void *buf, int num_bytes, int count, FILE *fp);

65

Structures, Pointers
and File Handling

In case of fread(), buf is the pointer to a memory area that receives the data from the
file and in fwrite(), it is the pointer to the information to be written to the file.
num_bytes specifies the number of bytes to be read or written. These functions are
quite helpful in case of binary files. Generally these functions are used to read or write
array of records from or to a file. The use of the above functions is shown in the
following program.

Example 12.4

Write a program using fread() and fwrite() to create a file of records and then read
and print the same file.

/* Program to illustrate the fread() and fwrite() functions*/
#include<stdio.h>
#include<conio.h>
#include<process.h>
#include<string.h>

void main()
{
 struct stud
 {
 char name[30];
 int age;
 int roll_no;
 }s[30],st;
 int i;
 FILE *fp;

/*opening the file in write mode*/
 if((fp=fopen("sud.dat","w"))== NULL)
 { printf("Error while creating a file\n");
 exit(0); }

/* reading an array of students */
 for(i=0;i<30;i++)
 scanf("%s %d %d",s[i].name,s[i].age,s[i].roll_no);

 /* writing to a file*/
 fwrite(s,sizeof(struct stud),30,fp);
 fclose(fp);

/* opening a file in read mode */
 fp=fopen("stud.dat","r");

/* reading from a file and writing on the screen */
 while(!feof(fp))
 {
 fread(&st,sizeof(struct stud),1,fp);
 fprintf("%s %d %d",st.name,st.age,st.roll_no);
 }
 fclose(fp); }

OUTPUT

66

This program reads 30 records (name, age and roll_number) from the user, writes one
record at a time to a file. The file is closed and then reopened in read mode; the
records are again read from the file and written on to the screen.

Files Check Your Progress 2

1. Give the output of the following code fragment:

#include<stdio.h>
#include<process.h>
#include<conio.h>
main()
{
FILE * fp1, * fp2;
 double a,b,c;

fp1=fopen(“file1”, “w”);
fp2=fopen(“file2”, “w”);

fprintf(fp1,”1 5.34 –4E02”);
fprintf(fp2,”-2\n1.245\n3.234e02\n”);
 fclose(fp1);
 fclose(fp2);

fp1=fopen(“file1”, “r”);
fp2=fopen(“file2”,“r”);

 fscanf(fp1,“%lf %lf %lf”,&a,&b,&c);
 printf(“%10lf %10lf %10lf”,a,b,c);
 fscanf(fp2,”%lf %lf %lf”,&a,&b,&c);
 printf(“%10.1e %10lf %10lf”,a,b,c);

 fclose(fp1);
 fclose(fp2);
 }
…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

2. What is the advantage of using fread/fwrite functions?
…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

3. ________ and _______ functions are used for formatted input and output
 from a file.

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

12.4 SEQUENTIAL Vs RANDOM ACCESS FILES

67

We have seen in section 12.0 that C supports two type of files – text and binary files,
also two types of file systems – buffered and unbuffered file system. We can also
differentiate in terms of the type of file access as Sequential access files and random
access files. Sequential access files allow reading the data from the file in sequential
manner which means that data can only be read in sequence. All the above examples

Structures, Pointers
and File Handling

that we have considered till now in this unit are performing sequential access.
Random access files allow reading data from any location in the file. To achieve this
purpose, C defines a set of functions to manipulate the position of the file pointer. We
will discuss these functions in the following sections.

12.5 POSITIONING THE FILE POINTER

To support random access files, C requires a function with the help of which the file
pointer can be positioned at any random location in the file. Such a function defined in
the standard library is discussed below:

The function fseek() is used to set the file position. Its prototype is:

int fseek(FILE *fp, long offset, int pos);

The first argument is the pointer to a file. The second argument is the number of bytes
to move the file pointer, counting from zero. This argument can be positive, negative
or zero depending on the desired movement. The third parameter is a flag indicating
from where in the file to compute the offset. It can have three values:

SEEK_SET(or value 0) the beginning of the file,
SEEK_CUR(or value 1) the current position and
SEEK_END(or value 2) the end of the file

These three constants are defined in <stdio.h>. If successful fseek() returns zero.
Another function rewind() is used to reset the file position to the beginning of the file.
Its prototype is:

void rewind(FILE *fp);

A call to rewind is equivalent to the call

 fseek(fp,0,SEEK_SET);

Another function ftell() is used to tell the position of the file pointer. Its prototype is:

long ftell(FILE *fp);

It returns –1 on error and the position of the file pointer if successful.

Example 12.5

Write a program to search a record in an already created file and update it. Use the
same file as created in the previous example.

/*Program to search a record in an already created file*/

#include<stdio.h>
#include<conio.h>
#include<stdio.h>
#include<process.h>
#include<string.h>
void main()
{
 int r,found;
 struct stud

68

 {

Files char name[30];

 int age;
 int roll_no;
 }st;
 FILE *fp;
 /* open the file in read/write mode */

 if((fp=fopen("f1.dat","r+b"))==NULL)
 { printf("Error while opening the file \n");
 exit(0);
 }

/* Get the roll_no of the student */
 printf("Enter the roll_no of the record to be updated\n");
 found=0;
 scanf("%d",&r);

 /* check in the file for the existence of the roll_no */
 while((!feof(fp)) && !(found))
 { fread(&st,sizeof(stud),1,fp);
 if(st.roll_no == r)

 /* if roll_no is found then move one record backward to update it */
 { fseek(fp,- sizeof(stud),SEEK_CUR);
 printf("Enter the new name\n");
 scanf("%s",st.name);
 fwrite(fp,sizeof(stud),1,fp);
 found=1;
 }
 }
 if (!found)
 printf("Record not present\n");
 fclose(fp);
 }

OUTPUT

Let the input file be as follows:
Geeta 18 101
Leena 17 102
Mahesh 23 103
Lokesh 21 104
Amit 19 105

Let the roll_no of the record to be updated be 106. Now since this roll_no is not
present the output would be:

Record not present

If the roll_no to be searched is 103, then if the new name is Sham, the output would
be the file with the contents:

Geeta 18 101
Leena 17 102
Sham 23 103
Lokesh 21 104
Amit 19 105

69

Structures, Pointers
and File Handling 12.6 THE UNBUFFERED I/O – THE UNIX LIKE FILE

 ROUTINES

The buffered I/O system uses buffered input and output, that is, the operating system
handles the details of data retrieval and storage, the system stores data temporarily
(buffers it) in order to optimize file system access. The buffered I/O functions are
handled directly as system calls without buffering by the operating system. That is
why they are also known as low level functions. This is referred to as unbuffered I/O
system because the programmer must provide and maintain all disk buffers, the
routines do not do it automatically.

The low level functions are defined in the header file <io.h>.

These functions do not use file pointer of type FILE to access a particular file, but
they use directly the file descriptors, as explained earlier, of type integer. They are
also called handles.

Opening and closing of files

The function used to open a file is open(). Its prototype is:

 int open(char *filename, int mode, int access);

Here mode indicates one of the following macros defined in <fcntl.h>.

Mode:

O_RDONLY Read only
O_WRONLY Write only
O_RDWR Read / Write

The access parameter is used in UNIX environment for providing the access to
particular users and is just included here for compatibility and can be set to zero.
open() function returns –1 on failure. It is used as:

Code fragment 2

int fd;

if ((fd=open(filename,mode,0)) == -1)
 { printf(“cannot open file\n”);
 exit(1); }

If the file does not exist, open() the function will not create it. For this, the function
creat() is used which will create new files and re-write old ones. The prototype is:

int creat(char *filename, int access);

It returns a file descriptor; if successful else it returns –1. It is not an error to create an
already existing file, the function will just truncate its length to zero. The access
parameter is used to provide permissions to the users in the UNIX environment.
The function close() is used to close a file. The prototype is:

int close(int fd);

It returns zero if successful and –1 if not.

70

Files Reading, Writing and Positioning in File

The functions read() and write() are used to read from and write to a file. Their
prototypes are:

int read(int fd, void *buf, int size);
int write(int fd, void *buf, int size);

The first parameter is the file descriptor returned by open(), the second parameter
holds the data which must be typecast to the format needed by the program, the third
parameter indicates the number of bytes to transferred. The return value tells how
many bytes are actually transferred. If this value is –1, then an error must have
occurred.

Example 12.6

Write a program to copy one file to another to illustrate the use of the above functions.
The program should expect two command line arguments indicating the name of the
file to be copied and the name of the file to be created.

/* Program to copy one file to another file to illustrate the functions*/
include<stdio.h>
include<io.h>
#include<process.h>

typedef char arr[80];
typedef char name[30];

main()
{
arr buf;
name fname, sname;
int fd1,fd2,size;

 /* check for the command line arguments */
if (argc!=3)
 { printf("Invalid number of arguments\n");
 exit(0);
 }
 if ((fd1=open(argv[1],O_RDONLY))<0)
 { printf("Error in opening file %s \n",argv[1]);
 exit(0);
 }
if ((fd2=creat(argv[2],0))<0)
 { printf("Error in creating file %s \n",argv[2]);
 exit(0);}

 open(argv[2],O_WRONLY);
 size=read(fd1,buf,80); /* read till end of file */

while (size>0)
 { write(fd2,buf,80);
 size=read(fd1,buf,80);
 }
 close(fd1);
 close(fd2);
}

71

Structures, Pointers
and File Handling

OUTPUT

If the number of arguments given on the command line is not correct then output
would be:

Invalid number of arguments

One file is opened in the read mode, and another file is opened in the write mode. The
output would be as follows is the file to be read is not present (let the file be f1.dat):

Error in opening file f1.dat

The output would be as follows if the disk is full and the file cannot be created (let the
output file be f2.dat):

Error in creating file f2.dat

If there is no error contents of f1.dat will be copied to f2.dat.

lseek()

The function lseek() is provided to move to the specific position in a file. Its prototype
is:

 long lseek(int fd, long offset, int pos);

This function is exactly the same as fseek() except that the file descriptor is used
instead of the file pointer.

Using the above defined functions, it is possible to write any kind of program dealing
with files.

Check Your Progress 3

1. Random access is possible in C files using function ____________.

2. Write a proper C statement with proper arguments that would be called to move the
 file pointer back by 2 bytes.

…………………………………………………………………………………………

…………………………………………………………………………………………

3. Indicate the header files needed to use unbuffered I/O.

…………………………………………………………………………………………

…………………………………………………………………………………………

……………………………………………………………………………………..….

12.7 SUMMARY

72

In this unit, we have learnt about files and how C handles them. We have discussed
the buffered as well as unbuffered file systems. The available functions in the standard
library have been discussed. This unit provided you an ample set of programs to start
with. We have also tried to differentiate between sequential access as well as random
access file. The file pointers assigned to standard input, standard output and standard
error are stdin, stdout, and stderr respectively. The unit clearly explains the different

Files type of modes oof opening the file. As seen there are several functions available to

read/write from the file. The usage of a particular function depends on the application.
After reading this unit one must be able to handle large data bases in the form of files.

12.8 SOLUTIONS / ANSWERS

Check Your Progress 1

1. fopen() function links a file to a stream by returning a pointer to a FILE structure

defined in <stdio.h>. This structure contains an index called file descriptor to a
File Control Block, which is maintained by the operating system for
administrative purposes.

2. Text files and binary files differ in terms of storage. In text files everything is

stored in terms of text while binary files stores exact memory image of the data i.e.
in text files 154 would take 3 bytes of storage while in binary files it will take 2
bytes as required by an integer.

3. EOF is an end-of-file marker. It is a macro defined in <stdio.h>. Its value is –1.

Check Your progress 2

1. The output would be:

1.000000 5.340000 –400.000000 -2.0e+00 1.245000 323.400000

2. The advantage of using these functions is that they are used for block read/write,
which means we can read or write a large set of data at one time thus increasing
the speed.

3. fscanf() and fprintf() functions are used for formatted input and output from a file.

Check Your progress 3

1. Random access is possible in C files using function fseek().

2. fseek(fp, -2L, SEEK_END);

3. <io.h> and <fcntl.h>

12.9 FURTHER READINGS

1. The C Programming Language, Kernighan & Richie, PHI Publication, 2002.
2. C How to Program, Deitel & Deitel, Pearson Education, 2002.
3. Practical C Programming, Steve Oualline, Oreilly Publication, 2003.

73

Structures, Pointers
and File Handling

APPENDIX-A

THE ASCII SET

The ASCII (American Standard Code for Information Interchange) character set
defines 128 characters (0 to 127 decimal, 0 to FF hexadecimal, and 0 to 177 octal).
This character set is a subset of many other character sets with 256 characters,
including the ANSI character set of MS Windows, the Roman-8 character set of HP
systems, and the IBM PC Extended Character Set of DOS, and the ISO Latin-1
character set used by Web browsers. They are not the same as the EBCDIC character
set used on IBM mainframes. The first 32 values are non-printing control characters,
such as Return and Line feed. You generate these characters on the keyboard by
holding down the Control key while you strike another key. For example, Bell is value
7, Control plus G, often shown in documents as ^G. Notice that 7 is 64 less than the
value of G (71); the Control key subtracts 64 from the value of the keys that it
modifies. The table shown below gives the list of the control and printing characters.

The Control Characters

74

Char Oct Dec Hex Control-Key Control Action
NUL 0 0 0 ^@ Null character

SOH 1 1 1 ^A Start of heading, = console interrupt

STX 2 2 2 ^B Start of text, maintenance mode on HP console

ETX 3 3 3 ^C End of text

EOT 4 4 4 ^D End of transmission, not the same as ETB

ENQ 5 5 5 ^E Enquiry, goes with ACK; old HP flow control

ACK 6 6 6 ^F Acknowledge, clears ENQ logon hand

BEL 7 7 7 ^G Bell, rings the bell...

BS 10 8 8 ^H Backspace, works on HP terminals/computers

HT 11 9 9 ^I Horizontal tab, move to next tab stop

LF 12 10 a ^J Line Feed

VT 13 11 b ^K Vertical tab

FF 14 12 c ^L Form Feed, page eject

CR 15 13 d ^M Carriage Return

SO 16 14 e ^N Shift Out, alternate character set

SI 17 15 f ^O Shift In, resume defaultn character set

DLE 20 16 10 ^P Data link escape

DC1 21 17 11 ^Q XON, with XOFF to pause listings; ":okay to send".

DC2 22 18 12 ^R Device control 2, block-mode flow control

DC3 23 19 13 ^S XOFF, with XON is TERM=18 flow control

DC4 24 20 14 ^T Device control 4

NAK 25 21 15 ^U Negative acknowledge

SYN 26 22 16 ^V Synchronous idle

ETB 27 23 17 ^W End transmission block, not the same as EOT

CAN 30 24 17 ^X Cancel line, MPE echoes !!!

EM 31 25 19 ^Y End of medium, Control-Y interrupt

SUB 32 26 1a ^Z Substitute

ESC 33 27 1b ^[Escape, next character is not echoed

FS 34 28 1c ^\ File separator

GS 35 29 1d ^] Group separator

RS 36 30 1e ^^ Record separator, block-mode terminator

US 37 31 1f ^_ Unit separator

Files Printing Characters

75

Char Octal Dec Hex Description
SP 40 32 20 Space

! 41 33 21 Exclamation mark

" 42 34 22 Quotation mark (" in HTML)

43 35 23 Cross hatch (number sign)

$ 44 36 24 Dollar sign

% 45 37 25 Percent sign

& 46 38 26 Ampersand

` 47 39 27 Closing single quote (apostrophe)

(50 40 28 Opening parentheses

) 51 41 29 Closing parentheses

* 52 42 2a Asterisk (star, multiply)

+ 53 43 2b Plus

, 54 44 2c Comma

- 55 45 2d Hyphen, dash, minus

. 56 46 2e Period

/ 57 47 2f Slant (forward slash, divide)

0 60 48 30 Zero

1 61 49 31 One

2 62 50 32 Two

3 63 51 33 Three

4 64 52 34 Four

5 65 53 35 Five

6 66 54 36 Six

7 67 55 37 Seven

8 70 56 38 Eight

9 71 57 39 Nine

: 72 58 3a Colon

; 73 59 3b Semicolon

< 74 60 3c Less than sign (< in HTML)

= 75 61 3d Equals sign

> 76 62 3e Greater than sign (> in HTML)

? 77 63 3f Question mark

@ 100 64 40 At-sign

A 101 65 41 Uppercase A

B 102 66 42 Uppercase B

C 103 67 43 Uppercase C

D 104 68 44 Uppercase D

E 105 69 45 Uppercase E

F 106 70 46 Uppercase F

G 107 71 47 Uppercase G

H 110 72 48 Uppercase H

I 111 73 49 Uppercase I

J 112 74 4a Uppercase J

K 113 75 4b Uppercase K

L 114 76 4c Uppercase L

M 115 77 4d Uppercase M

N 116 78 4e Uppercase N

76

Structures, Pointers
and File Handling

O 117 79 4f Uppercase O

P 120 80 50 Uppercase P

Q 121 81 51 Uppercase Q

R 122 82 52 Uppercase R

S 123 83 53 Uppercase S

T 124 84 54 Uppercase T

U 125 85 55 Uppercase U

V 126 86 56 Uppercase V

W 127 87 57 Uppercase W

X 130 88 58 Uppercase X

Y 131 89 59 Uppercase Y

Z 132 90 5a Uppercase Z

[133 91 5b Opening square bracket

\ 134 92 5c Reverse slant (Backslash)

] 135 93 5d Closing square bracket

^ 136 94 5e Caret (Circumflex)

_ 137 95 5f Underscore

` 140 96 60 Opening single quote

a 141 97 61 Lowercase a

b 142 98 62 Lowercase b

c 143 99 63 Lowercase c

d 144 100 64 Lowercase d

e 145 101 65 Lowercase e

f 146 102 66 Lowercase f

g 147 103 67 Lowercase g

h 150 104 68 Lowercase h

i 151 105 69 Lowercase i

j 152 106 6a Lowercase j

k 153 107 6b Lowercase k

l 154 108 6c Lowercase l

m 155 109 6d Lowercase m

n 156 110 6e Lowercase n

o 157 111 6f Lowercase o

p 160 112 70 Lowercase p

q 161 113 71 Lowercase q

r 162 114 72 Lowercase r

s 163 115 73 Lowercase s

t 164 116 74 Lowercase t

u 165 117 75 Lowercase u

v 166 118 76 Lowercase v

w 167 119 77 Lowercase w

x 170 120 78 Lowercase x

y 171 121 79 Lowercase y

z 172 122 7a Lowercase z

{ 173 123 7b Opening curly brace

| 174 124 7c Vertical line

} 175 125 7d Cloing curly brace

~ 176 126 7e Tilde (approximate)

DEL 177 127 7f Delete (rubout), cross-hatch box

	UNIT 12FILES
	APPENDIX-A
	THE ASCII SET
	
	The Control Characters
	Printing Characters

